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FOREWORD

The sixth 'Aha Huliko'a t Hawaiian Winter Workshop was held from January 15
to 18, 1991 at the East-West Center in Honolulu, Hawaii. The topic was the
"Dynamics of oceanic internal gravity waves."

The workshop marked a deep penetration into the subject of internal waves and
mixing. Progress in theory and observations have advanced the field to the point
where it becomes feasible to construct a global model to predict the internal-wave
field and diapycnal mixing. The participants were tasked to assess the physical
basis for such a model. Their lectures are published in these proceedings as
submitted in camera ready form by the authors. The order of the papers loosely
follows the agenda of the workshop, covering observations of internal-wave
induced mixing, the theory and modeling of specific dynamical processes, and a
discussion of major issues such as tidal versus wind forcing or interior versus
boundary mixing. Also included is a summary of the meeting, which appeared in
Eos, Transactions of the American Geophysical Union.

The workshop, made possible by a grant from the U.S. Office of Naval Research,
was hosted by the Department of Oceanography of the newly established School of
Ocean and Earth Science and Technology of the University of Hawaii. The
excellent facilities of the East-West Center and the capable staff directed by James
McMahon contributed greatly to the success of the meeting. The local organization
and logistical arrangements were expertly and cheerfully handled by Crystal
Miles. This proceedings volume came into existence through the creative and
dedicated research of the scientists who gathered in Hawaii and provided the
articles that follow and with the help of Brooks Bays, May Izumi, and Paula
Yoshioka.

Peter Miller Department of Oceanography
Diane Henderson School of Ocean and Earth Science and Technology

1000 Pope Road
University of Hawaii
Honolulu, HI 96822

t'Aha Huliko'a is a Hawaiian phrase meaning an assembly that seeks into the
depth of a matter.
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INTERNAL WAVE SHEAR AND DISSIPATION

M. C. Gregg, D. P. Winkel, and T. B. Sanford

Applied Physics Laboratory and School of OceanogTaphy, College of Ocean and Fishery
Sciences, University of Washington, Seattle, Washington, 98105-6698

ABSTRACT

With the Multi-Scale Profiler (MSP), we are able to obtain shear spectra extending
from vertical scales of hundreds of meters to the viscous cutoff of small-scale turbulence.
Comparing shear spectra from five sites reveals varied spectral shapes and amplitudes over
0.01-0.1 cpm (cycles per meter). The amplitudes converge, however, near 0.14 cpm, just
beyond the start of the rolloff of the internal wave range of the spectrum. Cross-spectra of
the u (east) and v (north) velocity components reveal significant coherence squared,
phases of -±900, and corresponding asymmetries in clockwise and anticlockwise rotary
spectra at the beginning of the rolloff in most spectra. We interpret these signatures of
near-inertial motions as evidence that the rolloff is caused by ctitical layer interactions of
waves having vertical scales of about 10 m being advected by larger-scale waves. Similar
signatures occur irregularly throughout the rolloff range, usually 0.1-1 cpm, consistent
with critical-layer interactions continuing with increasing ,avenumber until the waves
break down into turbulence. For waves close to the Garrett and Munk spectrum (GM76),
this breakdown occurs at wavenumbers larger than 1 cpm. Owing to the variety of
spectral shapes at low wavenumbers, variances of kinetic energy and shear do not change
in the same proportion when spectra depart from GM76. Spectra from low latitudes in
the' central Pacific fail to exhibit the inverse dependence on The Coriolis parameter, f,
predicted by Munk (1981). Their shape also differs substantially from GM76. Some have
lower kinetic energies than mid-latitude spectra but retain comparable shear variances. In
addition, all of the low-latitude spectra roll off much more steeply than do the
mid-latitude spectra. The steep rolloff forms a weak spectral gap separating internal
waves and turbulence.

INTRODUCTION

For several decades, most turbulence in the ocean's interior has been attributed to
breaking internal waves, even though the mechanisms of breaking remain obscure.
Possibilities include shear instability, advective overturning, strain, and critical layers
formed by large waves advecting smaller waves. The probability of breaking is estimated
using the Garrett and Munk (1975) model spectrum, $(k, w), of the wavenumber and
frequency content of the internal wave field. Aside from under the arctic ice cap (Levine et
al., 1985), observations find internal wave intensities at or above GM, but rarely below,
e.g., Smart (1988). Consequently, GM appears to describe the background state, with
average forcing in equilibrium with average dissipation by breaking.
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We are attempting to observe both equilibrium and nonequilibrium internal wave
states and to determine how vertical wavenumber spectra depart from GM, what clues
these departures offer about internal wave dynamics, and how they alter (e), the average
turbulent dissipation rate. Here we examine vertical shear spectra obtained with the
Multi-Scale Profiler (MSP). The spectra extend from 0.01 cpm (cycles per meter) to the
viscous cutoff, usually near 10 cpm. They were obtained at five sites, four of which were
used by Gregg (1989) in comparing moments of 10-m-shear with (e).

In exaiiining the shear spectra, we ask

" How do spectral shapes at low wavenumbers vary with changes in spectral
amplitude? Are the variations systematic, and do kinetic energy and shear variances
change proportionately?

" Do the spectra change systematically with latitude?

" How do spectra from the thermohaline staircase observed during CSALT compare
with spectra at a similar latitude in a normal profile?

* Do the spectra contain signatures of critical layer interactions, proposed by Holloway
(19a0) as the mechanism causing the rolloff?

" Does the wavenumber at which internal waves roll off vary with spectral amplitude?

" Is Nasmyth's universal spectrum for turbulence in stratified fluids an adequate
descriptior of the dissipation range?

BACKGROUND

Spectra of vertical strain (Gregg et al., 1973; Gregg, 1977a) and of vertical shear
(Gargett et al., 1981; Sherman and Pinkel, 1991) change from being nearly fiat, k° , at low
wavenumbers to approximately k ' at wavenumbers higher than about 0.1 cpm. We
define kk-1 as the wavenumber where the rolloff occurs. Munk (1981) incorporates the
rolloff into the GM model, but also inadvertently changes the relationship between kinetic
energy and shear variance. Consequently, we use the intermediate model, known as
GM76, with a modification for the rolloff, as given by Gregg and Kunze (1991).

Holloway (1980) points out that internal waves with short vertical wavelengths are
strongly advected by .arger, and hence faster, internal waves. Away from inertial and
buoyancy frequencies, i.e., f < w < N, the horizontal phase speed of internal waves is

Ch [m s- l (1)

where P is the vertical waveoumber in radians per meter. For j = 0.063 m- 1

(k3 = 0.01 cpm), ch .z 0.09 m s- 1, compared with an rms velocity for the entire wave field
of Urns = 0.07 m s- 1, obtained by iitegrating GM76 for N = 0.0056 s- 1 (3 cycles per
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hour). With increasing wavenumber, ch , U, equaling it at = 0.08 m- 1 (k3 =

0.013 cpm). Holloway convincingly argues that wave/wave interactions cannot be weak for
ch : u.... Why then does the shear spectrum remain flat to 0.1 cpm instead of rolling off
at k3 = 0.01-0.02 cpm?

In discussing the rolloff, Munk (1981) cites Ericksen (1978), who computes the
gradient Richardson number, Ri N 2/(AU/zZ) 2, from moored sensors having Az = 7 m.
A scatter plot shows few values smaller than 1/4, the necessary condition for shear
instability. Defining the Richardson function

Ri(k3) (N 2) (2)
f03 4SHEAR() de

Munk concludes that the internal wave field is characterized by Ri(kk-i) = 0(1) and
argues that the rolloff should shift with changes in energy as

E x kk-1 = constant (3)

where E is the dimensionless energy density in GM76. This criterion should apply for
shear instability, advective overturning, and instability due to lateral strain. Sherman and
Pinkel (1991) point out that when E = EGM76, Ri(0.1) ' 0.5 and Ri(k3) = 1 occurs well
into the rolloff.

Gregg (1977b) interprets the rolloff region of scalar spectra as composed of decaying
internal waves and irreversible density finestructure, i.e., density structure produced by
mixing. Gargett et al. (1981) interpret the rolloff as the buoyancy subrange of turbulence
and take its upper bound as the buoyancy wavenumber

kB ((N) 3 / 2  /2

k= ( () )' Im'](4

They identify the corresponding buoyancy length scale, LB = 21rkgl, as the vertical scale
of the largest overturns. To explore whether the rolloff results from buoyancy-modified
turbulence, they assume that the turbulence is controlled only by (N 2) and (e) and
nondimensionalize their spectra using kB and

4i (N 2) S-(
B M1(5)

In the rolloff region, the scaling reduces amplitude variations among their spectra from a
factor of 4 to a factor of 2. The slope of the rolloff is similar to predictions by some
theories of the buoyanicy subrange (Shur, 1962; Lumley, 1964), but Gargett et al. cannot
determine whether the agreement is fortuitous or results from the rolloff actually being a
buoyacy subrange.

We believe that the agreement is fortuitous because Gargett et al. are inconsistent in
taking LB as the scale of the largest overturns and in identifying the rolloff region with the
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buoyancy subrange. Their identification of LB with the largest overturns has been
confirmed by Dillon (1982) and subsequent investigators, who find that root-mean-square
(rmis) overturning scales are about 1.25((-) / (N2)S/ 2 )1/2 or O.2LB in the notation of
Gargett et al. (1981). (Gargett et al. and Dillon differ by 27r in defining the buoyancy
scale.) Because the largest overturns must be several times larger than Dillon's rms scale,
LB is a good upper bound. This, however, means that the rolloff region cannot contain
three-dimensional turbulence, which is assumed by Shur (1962) and Lumley (1964) when
they consider how stratification flattens the overturns to produce anisotropic structures.

In the atmosphere, internal wave shear spectra also roll off as k3l at high
wavenumbers, but at low wavenunibers the spectra often rise with increasing wavenumber
(Smith et al., 1987). This shape so concentrates velocity and shear variance near the
rolloff that the waves are sometimes modeled as a single Fourier component. Stratospheric
waves originate in the troposphere and grow rapidly with altitude in response to the
exponential decrease in air density. As a consequence, the rolloff shifts to lower
wavenumbers with increasing altitude, and the shift is attributed to saturation of the wave
field. Fritts (1984, 1989) reviews the extensive literature, which includes much debate
about the mechanisms saturating the wave field. Dewan and Good (1986) argue that both
shear instability and convective overturning produce spectra of the form

OSAT(k3) = b (N) [ 2] (6)

where b is a constant. They obtain b = 4 for shear instability when each wavcnumber
component saturates individually and b = 1 for convective instability, leading to the
conclusion that waves reach convective instability before shear instability. Dewan and
Good also note that turbulent layers can be much thinner than the scale at which the
spectrum saturates. The spectrum rolls off because waves at that scale lose energy.
However, the turbulent overturns extracting the energy may be only a few percent of the
scale of the wave. Smith et al. (1987) conclude that the instability criteria used by Dewan
and Good are too large and obtain b = 1/2 for a single Fourier component and b = 1/6 for
a spectrum of superposed waves.

Hines (1991a) holds that the saturated spectrum in t.'to atmosphere results from the
same mechanism as proposed by Holloway for the ocean, i.e., by Doppler shifting and
critical layer interactions, rather than by shear instability or convective overturning.
Furthermore, he develops a spectrum for this mechanism that asymptotically approaches
(6) (Hines, 1991b).

Discussions of internal waves in the ocean have concentrated on the extensive
observations in the upper ocean at mid-latitude. The limited observations available from
the deep ocean (Sanford, 1991) and from low latitudes (Wunsch and Webb, 1979; Eriksen,
1980) appear different. To incorporate the low-latitude observations, Munk (1981)
modifies GM76 by replacing the dimensionless energy density, E, with E/f, where
E' = 8.8 x 10- 7 and f is the Coriolis parameter. This changes the model from constant
energy in the wave field to constant spectral density, thereby accommodating Wunsch and
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Webb's report that " ... on the equator the frequency spectrum does not change shape
but the vertical and horizontal coherences are much reduced compared to midlatitude
values, suggestive of higher modes." With this change, the shear spectrum becomes

OSHEAR(k3) = 3E'b3 N2 2 rs- 21 (7)
2j.irf (1-+ /fp) 2  M-17)

In their theoretical models of wave/wave interactions, McComas and Miiller (1981)
and Henyey et al. (1986) give the energy flux through the spectrum as proportional to f.
Consequently, (e) is also proportional to f. Both Milller and Henyey (personal
communications, 1990) allow that the f scaling is dictated mostly by the need for correct
dimensions rather than by serious consideration of the effect of f on wave/wave
interactions. Nevertheless, both predict that for constant shear variance (e) -+ 0
approaching the equator. Coupled with Munk's (1981) prediction (7), one would expect to
find the anomalous situation of increasing shear variances and decreasing dissipation rates.

OBSERVATIONS AND DATA ANALYSIS

Encompassing a six-fold variation in f, the observations come from one cruise in the
Atlantic and two in the Pacific (Table 1). The Atlantic data were taken in October 1985
during CSALT and span the thermohaline staircase lying east of Barbados at pressures of
3-6.5 MPa (Gregg and Sanford, 1987). Retaining much of the steppiness in the density
field, the CSALT velocity profiles are not primarily signatures of internal waves but are
included for comparison with the other profiles, which are dominated by internal waves in
regions with little or no mean shear (Fig. 1). PATCHEX was conducted a year later on
the western side of the California Current, and the profiles appear typical of the open
ocean, except for ubiquitous .alt-stabilized temperature inversions (Gregg and Sanford,
1988). After the primary PATCHEX observations, we worked for two days in a coastal jet
off Crescent City, California, obtaining the profiles referred to as PATCHEX north. Both
sets of PATCHEX profiles extend to 10 MPa. The following spring, while transiting to
and from the equator for TROPIC HEAT 2, we took three test drops to 5 MPa at 6°N
and five drops to 10 MPa at 11N.

Table 1: MSP data sets.

Cruise Dates Position 10'f/s -7 # Profiles pm./MPa
CSALT Nov 23-24, 1985 12*N, 56.51W 3.02 5 7
PATCHEX Oct 17-24, 1986 34°N, 127-W 8.13 28 10
PATCHEX north Oct 26-27, 1986 42-N, 126°W 9.73 5 10
TROPIC HEAT 2 Mar 28-29, 1987 6.0°N, 143.5°W 1.52 3 5
TROPIC HEAT 2 Apr 18-19, 1987 11.5°N, 134.8°W 2.90 5 10

Because GM76 describes the average behavior of random wave fields, we tested the
PATCHEX and PATCHEX north shear profiles for randomness by first-differencing u
(east) and v (north) with Lz = 10 m. After WKB scaling, Au/L6z and Av/lAz have
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Figure 1: Typical velocity profiles (a) and average velocity spectra (b). PATCHEX north
has the largest velocity fluctuations and the highest spectral levels at low and at high
wavenunobers. The CSALT profiles show some of the steppiness of the density field, but
their average spectrum is similar to that of the PATCHEX profiles. The spectrum for
TROPIC HEAT 2 at 11"N is dominated by noise for k3 > 3 cpm. All spectra are slightly
aliased just before the Nyquist wavenumber at 5 cpm.

normal probability densities with zero means and are independent of each other (Gregg et
al., 1991). In addition, we used the run test (Bendat and Piersol, 1971) and the
cumulative periodogram (Jenkins and Watts, 1969) to determine that these shear profiles
have no significant departures from vertical randomness. These data sets, therefore,
satisfy the criteria for random internal wave fields assumed by Garrett and Munk (1975).
The other data sets are too small for adequate testing, but we find no visual suggestions of
deterministic features.

To avoid the near-surface internal wave duct, we analyze only data below the shallow
thermocline and, when the records are sufficiently long, take two sets of spectra, referred
to as shallow and deep. Depending on the record, the sections are 2.5-3.5 MPa thick.
Considering all sections, the average buoyancy frequency has a small range,
(N2) 1/2 = 0.0028-0.0042 s- 1.

The MSP senses velocity with two pairs of electrodes, two airfoil probes, and a
two-axis N. Brown acoustic current meter (ACM). The acoustic channels are recorded at
62.5 Hz, corresponding to Az = 4 mm at typical fall rates of 0.25 m s- 1. To convert the
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acoustic data to u and v, we adapt previous models (Evans et al., 1979; Hayes et al., 1984)
for the MSP configuration. Corrected velocities are low-passed with a 2-kPa Bartlett filter
and digitized at 1 kPa. At low wavenumbers, these data are compared with velocities
derived from the motionally induced electromagnetic signals, which are much less sensitive
to vehicle motion. At high wavenumbers, we compute velocity from the airfoil probes,
which sense fluctuations for 1-2 cpm < k3 _< 100 cpm.

Data are conditioned for spectral analysis by subtracting the mean, first-differencing,
an' applying the Harm filter. For the ACM records, u and v are put in real and complex
arrays, and Singleton's (1969) algorithm is used to take Fourier transforms of pieces
containing 1000 points (corresponding to 1 MPa). This yields two autospectra, Ou(k 3) and
0,(k3), and the co- and quadspectra, 45c(k3) and 0q,(k3), all of which are corrected for
first-differencing, for the loss in variance to the Hann window, and for the Bartlett
window. Successive pieces are overlapped by 50%, resulting in 4-6 pieces for sections of
2.5-3.5 MPa. Wavenumbers are given in cycles per meter as k3 = (0.01/Ap) cpm, where
Ap is the pressure interval in megapascals.

For one profile, the degrees of freedom per spectral estimate is

vi = 2L 2/(1.056L - 0.056) (8)

where L is the number of pieces overlapped by 50% (D. Percival, personal communication,
1991). After averaging R records, the total number of degrees of freedom is v = R x vi.
With L = 6 and R = 28, PATCHEX has v = 321. At the other extreme, TROPIC HEAT
2 at 6*N has L = 4 and R = 3, yielding v = 23. Defining ¢(k3) as a spectral estimate and
P(k3) as the true spectrum, the 95% confidence limits are[4(k3) < ((k3) <5 (9)

2 2~'k)--o~2 Xz,;0.975Ylv;0,025 -- 0.75

where X.;0.025 is the chi-square distribution evaluated for v degrees of freedom and the
0.025 percentile. These limits are plotted as shading around the spectra.

Adding the two autospectra forms the spectrum of total velocity,

4'VEL(k3) = 0.(k3 ) + 4(k 3 ) [(m/s) 2 cpm - 1 ]  (10)

which is twice the spectrum of specific kinetic energy. Near the Nyquist wavenumber,
5 cpm, all spectra are slightly aliased, in spite of the Bartlett window. Some have
negligible noise, e.g., PATCHEX north; others, e.g., TROPIC HEAT 2 at 11N, become
noisy near 3 cpm. Taking the noise level a 1.8 x 10- 8 m2 s- 1 and the noise ba idwidth as
2 cpm gives an rms noise of 0.16 rum s- .

The velocity spectra are used to compute the shear spectra

OSHEAR(k3) = (27rk3) 2 4 VEL(k3) [s- 2cpm - 1]  (11)

which are cut off before 2 cpm to avoid noise contamination (Fig. 2).
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Figure 2: Average shear and Froude spectra for the shallow (a) and deep (b) sections.
GM76 is shown on the Froude spectra as a heavy dashed line. Although the Froude spectra
differ by a factor of 5 at 0.01 cpm and by 10-20 at high wavenumbers, they ha;- nearly the
same amplitude at 0.14 cpm.

To compare shear spectra from records having different stratification, we present
them as Froude spectra

4eft(k) - N 2 -!SHEAR(k3) [CPM-']( n

For reference, we use the Froude spectrum for GM76,

45GM 7 6 (k3 ) = 3Eb3NO2 #2 K ](3Fr2jr (1 +/ /fp) 2  il(13)

and the saturated atmospheric spectrum with b = 1/2,

SA T(k3)= 1 (14)
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Co-spectra and quadspectra are used for coherence-squared

oh 2 (k3) - C(k 3 )2 + q(k 3 ) 2

cohi'(k 3)dU (k3)' (15)¢u (k3) 4i(k3)
and phase

1800 /-qq k3)
3)- arctan (16)

The sign convention gives 4 > 0 when v leads u with increasing pressure. Confidence
limits (95%) are computed using Percival (1991).

Because the ACM data are limited to k3 _< 3-4 cpm, the vertical spectrum is
completed using data from the airfoil probes. The two airfoil probes on the MSP are
aligned with their sensitive axes in the same direction, which aids in removing spectra
contaminated by plankton impacts. Consequently, we analyze the spectrum of one
channel, compare with the spectrum of other channel to detect noise spikes, assume
horizontal isotropy, and multiply by 2 to obtain OVEL(k3). For the deep data, spectra are
taken over intervals of 0.07-0.08 MPa, again with 50% overlap. For the shallow data, we
use a new robust procedure (Hess et al., 1991) and take spectra over 0.02 MPa intervals.
Comparisons of the two procedures reveal no significant differences in average spectra. As
the airfoils are recorded at 125 Hz, their spectra have many degrees of freedom, e.g.,
v = 5,253 for PATCHEX. Consequently, some 95% confidence limits are too narrow to be
seen on plots. We form the composite spectra by overlaying spectra from the ACM and
airfoil probes, without adjusting amplitudes. Variance-preserving plots show that the
dissipation ranges are moderately well resolved, except for the deep spectrum at 11N,
which has the weakest signals (Fig. 3).

At high wavenumbers, the observed spectra are compared with the Nasmyth universal
turbulence spectrum (Oakey, 1982). It depends only on the kinematic viscosity and (e),
which we obtain by averaging the e's we compute routinely over 5 or 10 kPa intervals.
Owing to its nonlinear dependence on (,-, the Nasmyth spectrum of (e) does not equal
the average of the individual Nasmyth spectra; numerical simulations show that the two
average spectra can diverge significantly, depending on the distribution of e (I. Seim,
personal communication, 1991). Therefore, although the Nasmyth spectrum is a useful
approximate reference, we should not expect exact agreement.

AMPLITUDES AND SHAPES

From Figure 2 and from t0e individual spectra in Figures 4-7, we draw the following
conclusions:

Deep and shallow spectra from the same data set are usually more alike than are
spectra from different sets. The shallow spectra from 60N and 11N are the
exception; they are nearly identical even though they were taken 1000 km and 3
weeks apart.
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Figure 3: Variance-preserving plots of the spectra in Figure 2.

All spectra have nearly the same amplitude at 0.14 cpm: (0.65-1.0) x -PM6(.4).
By contrast, their amplitudes vary by factors of 5 at 0.01 cpm and 20 in the
dissipation range.

e Between 0.01 and 0.1 cpm the spectra exhibit little uniformity in amplitude or
shape. Average slopes span -0.55 to +0.75, but in most cases, power laws fail to
represent the spectra accurately. Adjustment of the slope to meet GM76 near
0.14 cpm is the only consistent pattern; spectra above GM76 at 0.01 cpm slope
downward toward this common point, and those starting below GM76 slope upward.

* The k;1 rolloff for k3 > 0.1 cpm is the most uniform feature for CSALT, PATCHEX,
and PATCHEX north. The rolloff terminates at high wavenumbers where it
intersects the Nasmyth spectrum.

Froude spectra often have local maxima at or near kk-1. These are most evident in
variance-preserving plots (Fig. 8).
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* The three TROPIC HEAT 2 spectra peak near 0.08 cpm and roll off as k31T4 for
k3 > 0.1 cpm. The steep rolloff produces a weak spectral gap between internal waves
and dissipation.

* Turbulence is so weak in most records that the dissipation range follows the
Nasmyth spectrum only in the viscous cutoff. PATCHEX north is the exception,
with a distinct inertial subrange, extending over half a decade in wavenumbers.

Because most of the spectra change slope near 0.1 cpm, we estimate average slopes
using linear fits over 0.01-0.1 cpm and 0.1-1 cpm (Table 2), except where local maxima
call for different limits. Most fits over 0.01-0.1 cpm are nominal, as few spectra are truly
linear.

Table 2: Average slopes and standard deviations of shear spectra. Owing to particu-
lar features, some fits cover restricted intervals: (a) 0.1-0.4 cpm, (b) 0.1-0.37 cpm, (c)
0.01-0.045 cpm, (d) 0.01-0.06 cpm, (e) 0.02-0.1 cpm.

Cruise p/MPa 0.01-0.1 cpm 0.1-1 cpm
PATCHEX 2.50-5.50 +0.07 ± 0.04 -1.01 ± 0.02
PATCHEX 5.75-9.25 +0.16 ± 0.05 -0.89 ± 0.02
PATCHEX north 2.50-5.50 -0.54 ± 0.04 -0.96 ± 0.08a
PATCHEX north 5.75-9.25 -0.33 ± 0.06 -1.03 ± 0 .0 9b
TROPIC HEAT 2 60N 2.50-5.00 +0.75 ± 0.13c -1.43 ± 0.03
TROPIC HEAT 2 11N 2.50-5.50 +0.50 ± 0 .04d -1.38 ± 0.03
TROPIC HEAT 2 11N 6.50-10.0 -0.55 ± 0.04e -1.37 ± 0.03
CSALT 3.00-6.50 +0.15 ± 0.05 -0.89 . 0.03

Closest to GM76 throughout the full range of wavenumbers (Fig. 4), the PATCHEX
spectra are 0.8 and 0.6 times GM76 at 0.01 cpm. From there, they slope upward as k+ 0.0 7

and k+0 16. The shallow spectrum makes a sharp transition at the rolloff and initially
decreases more steeply than kg', dropping close to the saturated spectrum from the
atmosphere which has an amplitude about 50% smaller than GM76 when b = 1/2. The
deep spectrum rolls off more gradually and stays closer to k 1 . Near 1 cpm, both
PATCHEX spectra cease to roll off as steeply and lie close to the Nasmyth spectrum until
5-8 cpm, where they fail to roll off as steeply as the reference. Such weak turbulence is
unlikely to produce an inertial subrange; the viscous rolloff occurs at 2-3 cpm, only an
octave past the end of the internal wave part of the spectrum.

The PATCHEX north spectra are 3-4 times GM76 at 0.01 cpm and slope downward
to the common point at 0.14 cpm (Fig. 5). By 0.02 cpm, the shallow spectrum is close to
an extension of the k 1 portion of GM76, and it comes closer with increasing
wavenumber. The deep spectrum is initially nearly fiat and then curves downward to
approach the k31 extension near 0.08 cpm. For k3 > 0.1 cpm, both PATCHEX north
spectra are nearly identical to GM76 until 0.3-0.4 cpm, where they make sharp transitions
to the k1 ]3 inertial subrange of the turbulent spectrum. (Note that both the ACM and the
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Figure 4: Froude spectra, coherence-squared, phase, and the ratio of clockwise (OW) to
anticlockwise (ACW) velocities for PATCHEX. Shading shows 95% confidence limits. Also
shown in the top panel are GM76, the saturated internal wave spectrum applied to atmo-
spheric observations (b = 1/2), Nasmyth's universal turbulence spectrum in stratified fluids,
and the Froude function. Data from the acoustic current meter is used for kc3 < 1.5 cpmn.

airfoil probes detect the inertial subrange.) Beyond the viscous cutoff, these spectra
c'ontinue to decrease (Fig. 3), but less steeply than the Nasmyth spectrum. The total
range from where the spectrum initially follows k+1 3 to the peak of the dissipation
spectrum is a factor of 6-8, less than a decade. Either the close agreement with the
inertial subrange is fortuitous, or it indicates that locally universal turbulence can occur
at wavenunbers only 2-3 times larger than the energy-containing overturns.

The shallow spectra for TROPIC HEAT 2 are surprisingly similar, even to their small
irregularities (Figs. 2 and 6). From amplitudes 0.6 times GM76 at 0.01 cpm, they slope
upward to broad maxima near 0.08 cpm. Their most distinctive feature, however, is the
steepness of the rolloff, k31 4. The combination of the rise to a peak near 0.08 cpm and
the rapid rolloff at high wavenumbers resembles the narrow-band structures observed in
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Figure 5: Spectra for PATCHEX north, in the same format as the previous figure.

the stratosphere more than the broad-band fields observed in the mid-latitude ocean. By
1 cpm, the spectra are about 1/3 of GM76. As a result of this steep rolloff, their turbulent
spectra are more distinctive than for PATCHEX, even though (6) is smaller.

The deep spectrum at 11N starts at GM76, rises to almost twice GM76 at 0.02 cpm,
and then slopes gradually downward until just past 0.1 cpm, where it too rolls off rapidly
into a weak, but distinct, dissipation range (Fig. 7).

The CSALT spectrum (Fig. 7) is close to the PATCHEX spectra and to GM76, which
is unexpected in view of the markedly different appearances of the profiles (Fig. 1). At
0.01 cpm, CSALT is about half of GM76, slightly lower than the PATCHEX spectra. It
slopes upward to 0.03 cpm, where it flattens until it rolls off near 0.1 cpm. Unlike
PATCHEX, however, this spectrum remains below GM76 when it is nearly flat and
consequently rolls off from a lower amplitude than do the other spectra. Initially, the
rolloff is less steep than k ', but for k3 > 2 cpm the rolloff does not differ significantly
from the model.
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Figure 6: Shallow Froude spectra at 6°N and 11N during TROPIC HEAT 2. They are

nearly identical, including small fluctuations, even though they were taken 1000 km apart

at an interval of three weeks.

For this collection of spectra, variaace-preserving plots of the internal wave range
(Fig. 8) differ considerably, as expected from the differences in the log-log plots. The deep
PATCHEX spectrum is closest to GM76 and has the expected concentration of variance in
the rolloff (a slope of k3' on a log-log plot is flat on a variance-preserving format). The
shallow PATCHEX spectrum has a distinct peak at the beginning of the rolloff, and both
PATCHEX north spectra have similar peaks at slightly lower wavenumbers, corresponding
to the start of their rolloffs. Steep rolloffs of the TROPIC HEAT 2 spectra result in
variance contributions decreasing between 0.1 and 1 cpm, constituting the weak spectral
gap mentioned previously. Finally, for CSALT the variance is more concentrated at high
wavenumbers than for any other spectrum, consistent with concentration of much of the
shear across density steps several meters thick (Gregg and Sanford, 1987).

VARIANCES AND SIGNIFICANT WAVENUMBERS

Owing to the variety of their shapes, differences in the spectra cannot be described
adequately by E, the dimensionless energy density. In particular, variances of velocity and
of shear do not always vary in the same proportion when spectra depart from GM76.
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Figure 7: Froude spectra for the deep TROPIC HEAT 2 spectrum and for CSALT.

Because the velocity spectra are 'red,' velocity variances are dominated by the lowest

spectral estimate and receive little contribution past the first 4 or 5 estimates.

Consequently, they depend on the length of the data window and have relatively few

degrees of freedom. As a compromise between length and degrees of freedom, for the

longer records we compute eVEL(k3) from 2.4 MPa pieces, overlapped by 50%. GM76 is

digitized at the same watvenumbers and integrated in the same manner to yield

KE =f 0 CVE.L(k3) dk3  (7
KEGM £w M76(k3)dk 3

where klw, the upper limit of the internal wave regime, makes little difference to the

integral, and the factors of 1/2 relating kinetic energy and velocity variances cancel. As

shown iin Table 3, kinetic energy variances are (0.6-4.2) x GM76, consistent with previous

observations that internal waves in the open ocean do not fall far below GM76. The

contrast between PATCHEX and PATCHEX north appears to be between a typical

'quiet' site in open ocean and an energetic region near strong forcing, presumably the

coastal jet several hundred meters above the depths of these spectra.

Contrary to expectations, the low-latitude kinetic energies are less than or only

modestly larger tnan 0M76. If the site at 5°N had the same E' as PATCHEX, from
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Figure 8: Variance-preserving plots of the internal wave spectra. The deep PATCHEX spec-
trum is closest to GM76 and has uniform contributions to the variance in the rolloff between
0.1 and 1 cpm. Both PATCHEX north spectra rise rapidly near 0.4 cpm, where turbulence
becomes the dominant signal. The TH2 spectra have broad maxima centered at 0.08 cpm;
hence a weak spectral gap separates internal waves from turbulence. Several spectra have
local maxima near 0.1 cpm, indicating concentrations of variance at the beginning of the
rolloff.

integrating (7), we would expect the kinetic energy at 60 to be f34o/f6o = 5.4 times higher
than PATCHEX. Instead, we find the kinetic energy at 60N to be 0.83 times PATCHEX.
With only three profiles, this could be a statistical anomaly, but finding the same spectrum
and level at 11N suggests that this condition prevailed over a large area, at least in the
spring of 1987. Moreover, we would have expected the level at 11N to be half of that at
6*N. To the contrary, we find little difference. We conclude, therefore, that (7) may not be
an accurate representation of the latitudinal structure of the internal wave field.

Analogous to the Richardson function used by Munk (1981), we quantify the shear
variance with the Froude function

Fr (k3 )=/ 4Fr() (18)
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Table 3: Variances and evaluations of proposed universal constants. E is the ratio of
kinetic energy in the observed spectrum to that in GM76 digitized and integrated numer-
ically over the same wavenumbers. Spectra with 3.5 MPa data windows were integrated
from bounds of 0.004 cpm, and the others from 0.01 cpm. Values of kk-i are taken from
Table 4. ,,E ( hE ) /hE.Cruise p (M x kFr=l -G x kk-1

1KEGM RET 1  r
MPa cpm cpm

PATCHEX 2.50-5.50 0.86 0.15 0.10
PATCHEX 5.75-9.25 0.64 0.13 0.06-0.07
PATCHEX north 2.50-5.50 3.86 0.23 0.15-0.42
PATCHEX north 5.75-9.25 4.23 0.30 0.17-0.55
TROPIC HEAT 2 60N 2.50-5.0 0.71 0.13 0.06-0.09
TROPIC HEAT 2 11N 2.50-5.50 0.81 0.13 0.06-0.11
TROPIC HEAT 2 11N 6.50-10.0 1.38 0.35 0.12-0.19
CSALT 3.00-6.50 0.71 0.18 0.06-0.09

where the lower limit, kL, makes little difference because the principal contributions come
from about a decade of wavenumbers in the middle or high end of the internal wave band,
resulting in well-resolved shear variances and many degrees of freedom. Overlaying the
Froude functions (Fig. 9) reveals PATCHEX north standing well above the others. The
others vary, but much less than the differences between any of them and PATCHEX
north. For example, at 0.01 cpm the deep spectrum from 11N is largest of those in the
'pack,' but at 2 cpm it is less than PATCHEX. Froude functions are also plotted on
Figures 4 to 7, and in Table 4 they are evaluated at several significant wavenumbers.

We choose kIw as the wavenumber where an increase in slope marks the start of the
dissipation range. PATCHEX and CSALT spectra have only minor inflections marking
kiw, but, owing to the more rapid internal wave rolloff, the TROPIC HEAT 2 spectra
exhibit well-defined changes. For all cases, kiw < kB, often by about a factor of 2. For
PATCHEX north, kIw occurs at 0.3 and 0.4 cpm, where the k31 rolloff ends and the slope
changes to k+ 11 3. We also see that kB occurs at 0.7 and 0.6 cpm, the beginning of the
inertial subrange. We have yet to investigate overturning scales thoroughly in the scalar
records, but, as the inertial subrange implies isotropic turbulence, this narrow difference
should be the transition from overturns affected by stratification to those not affected. If
so, 0.3-0.7 cpm is much too narrow to be considered a buoyancy subrange.

Evaluating the Froude function at kiw, the shear variance that can be assigned to
internal waves has a relatively small range, correspondinig to Fr(k1w) = 1.5-2.5. Thus, in
all cases the dissipation iange begins well before Fr = 4, the necessary condition for shear
instability. This does not imply that individual turbulent events do not have Fr = 4, only
that it is not met on average throughout the profile. When we use the airfoil spectra to
extend the Froude function through the dissipation range, we find that some spectra do
not reach Fr = 4 even by the end of the dissipation range.
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Figure 9: Comparison of all Froude functions shows two classes: PATCHEX north and the
others.

The beginning of the rolloff, which we estimate visually as kk-1, is not sharply defined
for most spectra, but occurs over about an octave of wavenumbers. Considering all
records, the limits are 0.04 cpm < kk-i < 0.14 cpm. Munk (1981) and Gargett et al.
(1931) argue that the rolloff begins where the Froude function equals 1, i.e., kfry1 = kk-,.

However, from Figures 4-7 and Table 4 we see that, except for PATCHEX north,
k -l = (1.5-3) x kk-1. As noted by Sherman and Pinkel (1991), this is also obtained by
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integrating GM76, and it agrees with their observations for 1.5-1.8 MPa during
PATCHEX. Again, PATCHEX north is the exception, having kk-1 = kl;=l. Why does the
rolloff occur well before kf=l for the other spectra? Does the mechanism of instability
differ? For example, the analysis of instability in the atmosphere shows that convective
overturning should precede shear instability. Aspect ratios of oceanic internal waves
generally preclude convective overturning, but were conditions unusual for PATCHEX
north?

Table 4: Significant wavenumbers and, in the last two columns, evaluations of the Froude
function at the low and high wavenumber ends of the rolloff. Because the location of the
rolloff, kk-1, is often indistinct, the estimates are made visually on intersection of the 95%
confidence limits with the rolloff or its extension to lower wavenumber. Lower bound for
the FYoude function, Fr(k3), is 0.01 cpm.

Cruise p kk-1 kr=l kiw kB Fr(kk-i) Fr(klw)
MPa cpm cpm cpm cpm

PATCHEX 2.50-5.50 0.12 0.18 1.0 2.3 0.75 1.9
PATCHEX 5.75-9.25 0.09-0.11 0.20 1.0 2.0 0.52-0.64 2.0
PATCHEX north 2.50-5.50 0.04-0.11 0.06 0.3 0.7 0.83-1.53 2.2
PATCHEX north 5.75-9.25 0.04-0.13 0.07 0.4 0.6 0.69-1.60 2.5
TROPJC HEAT 2 60N 2.50-5.00 0.08-0.13 0.19 0.9 2.7 0.58-0.86 1.5
TROPIC HEAT 2 11N 2.50-5.50 0.08-0.13 0.16 0.8 1.8 0.63-0.93 1.6
TROPIC HEAT 2 11N 6.50-10.0 0.09-0.14 0.25 0.8 2.6 0.61-0.87 1.6
CSALT 3.0-6.5 0.08-0.12 0.25 1.2 2.0 0.38-0.57 2.1

Because we cannot obtain the total kinetic energy from these profiles, we test (3) as

KE
KEGM x kk-i = constant (19)K EGM

Closely related is KEKE x kFr_ = constant (20)KEGM

found by Duda and Cox (1989) to be a good representation of their profiles. In both cases,
the measure of the cutoff, kk-1 or kFr=1, varies inversely with the energy level. In neither
case do (19) or (20) accurately describe our observations (Table 3). Instead, there appear
to be several groups having approximately the same products. One group, containing
PATCIEX, shallow TROPIC HEAT 2, and CSALT, has (KE/KEGM) x kFr=l =

0.13-0.18 and (KE/KEGM) x kk-i = 0.06-0.11, compared with 0.23-0.30 and 0.15-0.55
for the PATCHEX north spectra, which constitute a second group. The deep spectrum
from 11N is a group by itself, with (19) close to PATCHEX north and (20) intermediate
between the first two groups. In any event, neither kt=l nor kk- decreases sufficiently to
compensate the increase in kinetic energy for PATCHEX north relative to PATCHEX.
Therefore, (19) and (20) fail to describe even our mid-latitude data.
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VERTICAL SYMMETRY, COHERENCE, AND PHASE

Although GM76 asz.unes vertical symmetry, observations often reveal asymmetry.
Most kinetic energy in .hc. internal wave field resides at near-inertial frequencies and is
polarized, with significant coherence between u and v. In the northern hemisphere,
near-inertial motions with downward group velocity have clockwise rotation (CW, with

= +90) and those with upward group velocity have anticlockwise rotation (ACW, with
= -90). Rotary decomposition of velocity profiles often reveals 4CW/iACW > 1,

corresponding to an excess of downward propagating energy (Leaman and Sanford, 1975).

At low wavenumbers, the shallow PATCHEX record has small, but significant, coh2 ,
Ot +90, and oCW/ACW > 1 for k = 0.01-0.03 cpm (Fig. 4). (Because confidence limits
for 0 depend inversely on coh2, 0 is unreliable when coh 2 is insignificant.) At 0.01 cpm,
the flux asymmetry is large, upward exceeding downward by nearly 2:1. The excess
decreases with increasing wavenumber, and does not differ significantly from 1 for
0.04-0.07 cpm. Over nearly the same interval, coh 2 also decreases and is not significantly
different from 0. Coherence-squared is again significant between 0.08-0.13 cpm and
0.16-0.2 cpm. In the first instance, 0 ;t +600 (the confidence limits include +90'), and
0CW/0ACW > 1, all consistent with downward propagation. In the second instance,
0 % -90* and 0CW/0ACW < 1, indicating upward propagation. Furthermore, replotting
the spectra with a linear wavenumber axis reveals similar patterns throughout 0.1-1 cpm
(Fig. 10). In these cases, however, the significance is much less.

At low wavenumbers, the deep PATCHEX record does not have significant coh2, and
0CW/4ACW is not significantly different from 1 (Fig. 4). The vertical symmetry of this
record may be a consequence of its distance from surface forcing. Lack of coherence at low
wavenumbers, however, does not appear to affect intermediate scales. Coherence-squared
is significant for 0.05-1.2 cpm and 0.18-2.0 cpm, with the same pattern of phase and flux
asymmetry as found in the shallow spectrum; i.e., the first coherent band has 0 % +90*
and cOW/ ACW > 1, the second has 0 % -900 and 0CW/PACW < 1. Furthermore, using a
linear wavenumber axis shows additional coherent patterns throughout the rolloff
(Fig. 10).

We are not aware of previous reports of near-inertial signatures at high wavenumbers.
To the contrary, after decomposing a time series of velocity profiles into mean,
near-inertial, and high-frequency internal waves, Sanford (1991) finds that "At all
wavelengths shorter than about 100 m, the higher-frequency waves are more energetic."
Occurrence of the first coherent band at the beginning of the rolloff is a signature one
would expect if the rolloff results from strong Doppler shifting creating critical layers for
waves of this scale. The small magnitudes of coh 2 demonstrate that somewhat less than
10% of the variance at the rolloff scale is involved, which is plausible. Bands of coherent u
and v structures throughout the rolloff are also consistent with wave/wave interactions,
moving energy to higher wavenumbers until the waves break down into turbulence at
k3 > 1 cpm. Existence of coherent structures is also inconsistent with the rolloff being a
buoyant subrange of three-dimensional turbulence.
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Figure 10: The PATCHEX spectra on a linear wavenumber axis. Although not as well
defined as the two patterns at the beginning of the rolloff, the region from 0.1-1 cpm has
numerous sections with significant coh2 , ± -90*, and matching ICW/4ACW greater than
or less than 1.

Similar coherent patterns occur in some of the other spectra, but, owing to fewer
degrees of freedom, their significance is much less. At 0.01 cpm, the PATCHEX north
spectra have coh 2 = 0.1-0.2, 4, z +90', and 0CW/$ACW -> 2 (Fig. 5). Thus, even for the
deeper record, energy at low wavenumbers is strongly dominated by downward
propagating waves, and these signatures drop off with increasing wavenumber. For the
shallow record, only one wavenumber near the rolloff has significant coh 2, but for the deep
record the band is wider, 0.07-0.1 cpm, and coincides with the sigr" ,unt local spectral
maximum which is very prominent in the variance-preserving plot kt: "6. 8).

The shallow TROPIC HEAT 2 spectra are quite different, being dominated by
upward-propagating energy: coh2  0.6. 4 - -90 °, and PCW/$ACW 0.3 (Figs. 6 and 7).
Curiously, coh2 is equally large for the deep spectrum at I1lN , but €_ +900 and
4CW/1ACW ; 3. Thus, at low wavenumbers, the shallow records are strongly dominated
by upward-propagating energy and the deep record is strongly dominated by
downward-propagating energy, a situation we cannot explain.
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The shallow spectrum at 111N has two additional bands with significant coh 2:
0.09-0.13 cpm and 0.18-0.2 cpm (Fig. 6). For both, qS z -90' and 4Cw/PACW < 1,
demonstrating upward propagation. Perhaps upward propagation in the second of these
bands results from the strong dominance of upward propagation at 0.01 cpm. There is a
suggestion of the same pattern at 6N, but the degrees of freedom are too small for it to
be significant.

The deep spectrum at 11'N has only one spectral estimate with significant coherence
near the rolloff (Fig. 7). The phase has very wide confidence limits that include -90* .

Finally, CSALT has no patterns suggesting critical layer interactions (Fig. 7).

SUMMARY AND DISCUSSION

Returning to the questions posed in the introduction, for these observations we find

" Spectral shapes change with amplitude principally at wavenumbers less than
0.1 cpm; near 0.14 cpm all of the Froude spectra have nearly the same amplitude.
Consequently, the only systematic structure to variations for k3 = 0.01-0.1 cpm is
sloping downward when the amplitude exceeds GM76 and sloping upward when the
amplitude is smaller than GM76. Owing to the irregular shapes, kinetic energy and
shear variances do not change in the same proportion.

" Spectra from low latitudes in the central Pacific differ markedly from those at
mid-latitude, but the differences are not those predicted by Munk's (1981) addition
of latitude dependence to GM76. Munk predicts kinetic energies 3 and 5 times
GM76 at 11*N and 60N, respectively; whereas we observe 0.8 and 1.4 times GM76 in
the shallow and deep spectra at 11N, and 0.7 times GM76 in the shallow spectrum
at 6N. Both shallow spectra have band-limited shear variances concentrated near
0.08 cpm and roll off as kal .4, rather than as k " at mid-latitude. Although not as
peaked as the shallow spectra, the deep spectrum at 11*N rolls off as steeply and
also has a spectral gap separating internal waves and turbulence.

" The CSALT spectra are similar to PATCHEX and to GM76, the principal difference
being somewhat lower levels near 0.01 cpm. In view of the different appearance of
the CSALT velocity profiles, the similarity of the spectra to PATCHEX and to
GM76 is unexpected. It is not clear, however, what spectral shape is typical at that
latitude. The CSALT spectra, taken at 12'N, differ markedly from those observed at
11.5 0N during TROPIC HEAT 2. More spectra at low latitudes are needed to define
the norm, assuming one exists.

" In most of the spectra, bands of near-inertial energy (as indicated by significant
coherence-squared between u and v with phases of ±90) span the rolloff, kk-1, and
recur irregularly throughout the rolloff region, usually 0.1-1 cpm. These signatures
are unexpected, as high-frequency waves generally dominate wavenumbers greater
than 0.01 cpm (Sanford, 1991), and we interpret them as evidence of critical layer



Internal Wave Shear and Dissipation

interactions causing the rolloff. Preliminary examination of overturning scales in
these profiles shows vertical scales consistent with kB, i.e., tens of centimeters or less
except for PATCHEX north which has overturns of about 1 m. Thus, in both cases,
the rolloff cannot contain the three-dimensional turbulence needed for a buoyancy
subrange.

The PATCHEX north spectrum rolls off at a lower wavenumber than does the
PATCHEX spectrum, as expected from the larger velocity and shear variances of
PATCHEX north. The decrease in kk-i, however, is only about half the decrease
predicted by Munk's (1981) E x kk-1 = constant. For the other records, kk-1 shows
little systematic shift with changes in kinetic energy but all of them roll off where
Fr = 0.5-0.8.

When evaluated with (e), Nasmyth's spectrum adequately approximates the
observed spectra in the dissipation range, particularly for the PATCHEX north
records which are strongly turbulent. Our spectra, however, roll off more gradually
beyond the viscous cutoff, and we do not know whether this results from the
averaging procedure or is more fundamental.

Considering the range of spectral amplitudes, the variety of spectral shapes for
0.01-0.1 cpm is not surprising. Energy enters at low wavenumbers, and the spectrum is
likely to contain signatures of the generation mechanisms, much like energy-containing
scales of turbulence. (This is especially true for these data, which were collected at
relatively shallow depths and may have sampled forced rather than freely propagating
waves.) The observed departures from white shear spectra, i.e., from k° , imply some
degree of coherent structure in the low-wavenumber shear field. This is a general
consequence of a white spectrum and a unit impulse autocorrelation function being a
Fourier transform pair, and is the basis for the cumulative periodogram test for
correlatedness (Jenkins and Watts, 1969). As generation mechanisms are identified, it may
be possible to infer mechanisms from spectral signatures and to relate changes in kinetic
energy to changes in shear. At present, however, we cannot identify the mechanisms. Nor
can we accurately predict variations in shear from those in kinetic energy.

During eight days of sampling, internal waves did not change appreciably during
PATCHEX. The other observations were collected much more rapidly and thus represent
only snapshots. However, tl-n similarity of the shallow spectra from 6°N and 11N makes
it plausible to assume that these also represent a steady state. Furthermore, the long time
scale of the thermohaline staircase east of Barbados is strong evidence that CSALT also
sampled a steady state.

In spite of significant differences in low-wavenumber shear and in the steepness of
their rolloffs, PATCHEX and TROPIC HEAT 2 have nearly the same average dissipation
rates, as does CSALT. These rates are minimal, slightly above 101 W kg- 1. Minimal
dissipation rates reflect the tendency of all thermodynamic systems to evolve to states of
minimum entropy production consistent with the constraints imposed upon them (De
Groot and Mazur, 1962). By contrast, (,) is not minimal for PATCHEX north.
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We conclude that the most likely interpretation of the spectra and their dissipation
rates is

1. PATCHEX and TROPIC HEAT 2 sampled steady states or nearly steady states of
freely propagating waves close to equilibrium; i.e., the observations typify long-term
averages at those sites, (e) represents the average energy flux through the shear
spectra, and the spectral shapes are adjusted to maintain that energy flux.

2. The contrast in spectral shapes between PATCHEX and TROPIC HEAT 2 results
from differences in large-scale forcing of the internal wave field and in latitudinal
changes in the rate at which wave/wave interactions transfer energy.

3. Either PATCHEX north was in steady state with active forcing or it was decaying
from previous forcing.

In view of the limited sampling, we obviously cannot prove these statements; we
regard them as hypotheses to be tested by further observations and perhaps by numerical
calculations. In Figure 9, we have already noted how the Froude function for PATCHEX
north stands above the others. Plotting ratios of the observed Froude functions to the
Froude function for GM76 shows how these functions change with wavenumber (Fig. 11).
Except for PATCHEX north, the Froude ratios converge to about 0.8, regardless of
whether they start above or below 1. All of these records have low dissipation rates, as
shown by the variance-preserving dissipation plots in the right-hand panels. The ratios for
PATCHEX north drop with increasing wavenumber, but terminate at k-w, the end of the
internal wave region, before reaching 0.8. They correspond to the only high dissipation
spectra. We conclude that Fr(kjw) is likely the major factor establishing (e).

Most sampling during TROPIC HEAT 2 was concentrated on the equator, but we
also profiled at 1*N and 2°N. At low wavenumbers, these profiles have Froude ratios that
fill in the space in Figure 11 between PATCHEX north and the deep record at 11N.
Unlike PATCHEX north, however, the Froude ratios for the 20N-0 0 N spectra drop steeply
with increasing wavenumber and terminate near 0.8. They also have minimal dissipation
rates and overlay the low values on the variance-preserving spectra. Owing to the strong
mean shears within 20 of the equator, wave/wave interactions are likely to be more
complicated than for the records we have presented. Nevertheless, the shapes of their
spectra are consistent with the hypothesis that (e) is controlled by Fr(kiw).

The rapid rolloff in the low-latitude spectra is consistent with reduced wave/wave flux
feeding energy to small scales. But, if that flux is linearly proportional to f, why isn't the
rolloff steeper at 60N than at 110N. And, why are the dissipation rates at these stations
nearly the same as at PATCHEX? Because velocity and shear variances for k3 _< kk- are
comparable to PATCHEX, we expect (e) at 11N to be 1/3 of PATCHEX and (e) at 60N
to be 1/5 of PATCHEX.

The location of the rolloff, kk-, shows the same two groups of profiles that we obtain
from the Froude functions, namely PATCHEX north, with Fr(kk-1) : 1, and the others,
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Figure 11: Ratios of observed roude functions to the Froude function and vari-
ance-preserving dissipation spectra for shallow spectra (left) and for the deep spectra plus

CSALT (right). Froude plots are cut off at kiw. In spite of larger differences in amplitude
and shape among the spectra, only PATCHEX north stands out.

with Fr(kk-1) ..t 0.5. Although we do not consider the rolloff a buoyancy subrange, we

applied the buoyancy scaling used by Gargett et al. (1981) to PATCHEX and PATCHEX

north, which have similar values of f. The results are dramatic (Fig. 12), achieving a

better collapse than obtained by Gargett et al. In addition, the collapse extends across the

internal wave range and is not limited to the rolloff. If this collapse is not fortuitous, the

scaling must be an internal wave scaling rather than a buoyancy scaling. As in the models

of wave/wave interactions by McComas and Miller (1981) and Henyey et al. (1986), for a

wave field in equilibrium (,) is also the rate at which energy flows through the spectrum.

In which case, the striking collapse of PATCHEX and PATCHEX north indicates that the

shape of the PATCHEX north spectrum is close to that required to maintain a uniform

energy flux.

Occurrence of the rolloff at 0.1 cpm, instead of near 0.013 cpm as predicted by

Holloway (1980), indicates that ch - URMS is not the criterion for Doppler shifts leading to
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Figure 12: Froude and buoyancy scalings applied to the shallow (left) and deep (right)
spectra from PATCHEX and PATCHEX north. The buoyancy scaling gives a much better

collapse throughout the internal wave range, k3/kB < 1 in our interpretation, but not in
the turbulent range, k3/kB > 1.

critical layers. We suggest two reasons for the apparent discrepancy in the scale of the
rolloff: 1) The probability distribution for velocity differences produced by large-scale
waves is skewed. Consequently, even though ch = URMS at 0.013 cpm, half or more of the
distribution at that scale has smaller velocity differences. 2) Critical layers also require
aligrnent in direction between the 'test' wave and the field of the large-scale waves. For a
horizontally isotropic wave field, this further reduces the likelihood of a critical layer when
ch URMS.

When u and v are normally distributed, u2 + v2 has a chi-square distribution (when
suitably normalized), which is skewed. Consequently, the most pru~bable velocity difference
experienced by a wave is less than URMS. In Figure 13, we show probability density
functions of log10 [(Au)2 + (Av) 2] for a range of Az. For PATCHEX, when Az 50 n,

corresponding to Ch URMS, half of the velocity differences are less than c4, and the
probability of matching amplitude and direction must be relatively low. For Aiz = 10 in,
however, only a few percent of the velocity differences are less than 4h, and the probability
of matching amplitude and direction must be much larger. The probability densities for
PATCHEX north are not as well defined, but show few velocity differences less than 4 for
Az =.50-25 , consistent with the rolloff beginning at lower wavenumbers.
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Figure 13: Probability density functions of (A V) 2 for different vertical lengths, Az. Shading
shows where AV _ C, the horizontal phase speed of internal waves having the same vertical
scale. The histograms are fully shaded only when Az < 10 m.

Much of this discussion is speculation in an attempt to formulate the hypotheses
needed to move from internal wave kinematics to dynamics. These records demonstrate

that, until we better understand dynamics, we need to continue fully resolving the vertical
shear spectrum. Further observations are needed to determine the full range of shapes and
amplitudes for shear spectra, but, even more, to reveal how these characteristics evolve
during strong forcing.
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ABSTRACT

Recent work by M.C. Gregg has suggested that the dissipation rate of turbulent

kinetic energy in the oceanic thermocline may be closely related to the internal
wave shear variance measured at 10 m vertical scales. If this relationship holds,
it significantly decreases the experimental effort required, to estimate eddy vis-
cosities and diffusivities. However, as Gregg has noted, the diffusivities associated
with his model in a Garrett-Munk (GM) canonical wave field are quite small, and
it therefore appears that mixing driven by internal waves may only be important
where the mean energy level is substantially above GM. In this paper we explore
the relationship between internal waves and microscale dissipation from a region
of energetic mixing, near the Yermak Plateau in the Arctic Ocean. The dissipa-

tion rate is an order of magnitude above that predicted by Cregg's model, and we
shall discuss several aspects of the local internal wave field which may contribute

to this result. We also suggest one way in which Gregg's model might be modified
to account for this new data set.

INTRODUCTION

The recent paper by Gregg (1989) (hereinafter G89), which suggested a close rela

tionship between internal wave (IW) shear and dissipation rate, E, has prompted
a number of studies aimed either at (a) applying his results to other ,ppropriate
data sets, or (b) searching for locations in which the scaling model does not work.
As Gregg himself has indicated (pers. comm., 1990), anomalous environments
may be regions of large diapycnal transport of both momentum and scalars, per-
haps dominating the basin-averaged diapycnal fluxes. It is therefore necessary to
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determine why these regions differ from the cases studied in G89, and whether a
predictive model, based on observed IW field properties, can be found for these
regions. G89 noted that the diffusivities implied by the model applied to a GM
wave field at the canonical energy density level are small, and may therefore not
be relevant to the dynamics of the mid-ocean thermocline, except perhaps on
time scales of decades or longer. Apparently then, the places to look for vertical
mixing rates which are sufficiently large to be dynamically important are regions
where the IW energy density is substantially higher than the canonical value.
However, as the present analysis will show, regions where the energy density is
not necessarily abnonaally large, but the wave field deviates in other ways from
the GM assumptions, can also be regions of large diapycnal transports.

One of the aims of Gregg's study was to find ways to reduce the field effort in-
volved in estimating e. One possibility, which he explored, was to use Expend-
able Current Profilers (XCPs) to determine the shear at 10 m vertical scales.
For the data sets which he considered, shear variance was a good indicator of e
in some averaged sense. However, this method still requires that the experimen-
talist be present to launch the XCPs, and the questions of sampling bias in e es-
timates due to small sample size (Baker and Gibson, 1987) still remain. In an
ideal world, one would obtain estimates through all types of events which might
contribute to e within the time and space intervals of interest. For example. if
e could be linked to some basic variables which are obtainable from long-term
moorings (e.g. IW energy density, and buoyancy frequency, N), then 6 could be
"monitored" throughout the life of the mooring. Unfortunately, as we shall show
below, a model based simply on energy and N doesn't work well in some envi-
ronments where mixing is important. However, there may be higher order IW
statistics which could be measured, and used to improve models. The require-
ments for models are not as strict as they might seem at first, since even a factor
of two error in a model prediction might be much less than the errors involved in
extrapolating the results of a short-duration microstructure or XCP program.

The data set which we shall use to explore this topic was obtained from the
Oceanography ("0") Camp, deployed on the pack ice in March-April 1989 dur-
ing the Coordinated Eastern Arctic Experiment (CEAREX). A background paper
which fully describes the program and the data is in press (Padman and Dillon,
1991; hereinafter PD91), however a short review is provided in the following sec-
tion of the current paper. We then review some of the anomalous characteristics
of the 0 Camp IW climate, followed by a divcussion of the implications for pre-
dictive modelling of E in this environment. There are two seemingly dichotomous
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aims to this study: first, we wish to show how the observed wave field is incon-
sistent with the assumptions of existing wave/dissipation models; and second, we
wish to indicate that some modelling success can be retained despite these incon-
sistencies. Hopefully, however, the two approaches are actually complementary,
even if the empirical modeling is primarily a short-term effort awaiting the con-
struction of more versatile IW dissipation models.

THE CEAREX PROGRAM

CEAREX was a multi-investigator Arctic oceanographic experiment conducted
from several platforms, including the 0 Camp from which the data discussed in
this paper were obtained. Apart from direct microstructure measurements, data
from 0 Camp include Acoustic Doppler Current Profiler (ADCP) measurements
in the upper several hundred meters. and densely sampled CTD data, as well as
water depth and meteorological information. A schematic of the various programs
at 0 Camp is shown in Fig. 1. The drift track (Fig. 2) was determined from ap-
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proximately hourly satellite fixes, then smoothed with the complex demodulation
algorithm described by McPhee (1988). This algorithm assumes that the ice mo-
tion consists solely of tidal and inertial oscillations, and low-frequency drift.

Approximately 1500 microstructure profiles were made with the Rapid-Sampling
Vertical Profiler (RSVP) (Caldwell, et al., 1985; Padman and Dillon, 1987) from
March 31 to April 25, 1989. Data were obtained between the surface and a typ-
ical maximum depth of 340 m, and the cycling time between profiles was usu-
ally 15-20 minutes. The RSVP (Fig. 3) is a tethered, freefall profiler about 1.3
m long, equipped with sensors for measuring pressure, P, orthogonal microscale
velocity shears, u,(= au/Oz) and v,(= Ov/Oz), temperature, T, and conductivity,
C. The average fall rate is about 0.7 m s- 1, constrained by a drag element con-
sisting of an annular brush near the rear of the probe during descent, but able to
slide towards the RSVP's nose for improved retrieval dynamics. A profile to 340
m takes about 8 minutes. The raw data sampling rate during CEAREX was 256
Hz for all channels. Microscale temperature was measured with a Thermometrics
FP07 thermistor (TI) projecting forward from the probe nose assembly. Gregg
and Meagher (1980) measured a 3-dB attenuation point for similar thermistors to
be approximately 15 Hz. Conductivity was measured with a Neil Brown Instru-
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Fig. 2. Drift track of the CEAREX 0 Camp. Depth contours are in meters. Sym-
bols are given once daily, and are marked in day-of-year (1989).
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Fig. 3. Schematic of the Rapid-Sampling Vertical Profiler. Sensors are thermistors
(TI and T2 ), conductivity cell (N-B Cond.), pressure transducer (P), and airfoil
shear probes (U, and V..).

ment Systems (NBIS) conductivity cell (N - B Con ,.) mour.ted on the side of
the probe, 0.15 m above the probe tip. For salinity determination a second FP07
thermistor (T2) was mounted adjacent to the conductivity sensor. The NBIS cell
has a response length of 0(0.1) m (Gregg et al., 1982), so that at the nominal
fall rate the time constant of the conductivity cell is 0.14 s. Post-analysis of the
conductivity data indicated a small, time-varying calibration offset voltage: con-
ductivities have therefore been corrected by comparison with CTD data, pro-
vided by J. Morison. Vertically averaged salinity, S, was determined from sim-
ilarly filtered T and C: the effective resolution for S and density, at, is about
0.2 m. Least significant bit (Isb) resolutions of the raw 16-bit records are about
1.5 x 10-40 C in temperature, and 1.5 x 10' S m - 1 in conductivity. Typical rms
noises, based on measurements deep within non-turbulent surface mixed layers,
are comparable to the Isb resolutions.

Velocity microstructure was measured with two orthogonally mounted airfoil
shear sensors (U,, V) on the RSVP's nose. These probes (Osborn and Crawford,
1980) have a spatial resolution of about 0.02 m, sufficient to resolve most of the
"universal", or Kolmogorov, shear spectrum for typical oceanic dissipation rates.
Estimates of e were made for approximately 1.4 m depth intervals (2 s of data)

111;
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by integrating the velocity shear spectra in the wavenumber range of 2 to 20 cpm.
Assuming isotropy of velocity fluctuations in this wavenumber band,

= 2 (u+V (1)

where v is the kinematic viscosity of seawater, about 1.8 x 10-6 m2 s- 1 at these
low temperatures, and ( denotes vertical averaging. The noise level based on
measured microscale shears in the quietest regions appears to be about 10- 9
W kg - 1, substantially higher than during the Arctic Internal Wave Experiment,
AIWEX, (Padman and Dillon, 1987). We believe that this is due to a change in
the dynamics of the RSVP, which in CEAREX was an air-filled, pressure-sealed
case compared with an oil-filled instrument in AIWEX. The probable result of
the latter change, which was compensated for by a reduction in the number and
size of drag and buoyancy elements near the instrument's tail, is an increase in
motion near the instrumented nose. However, e in energetic mixing patches was
10' times greater than the noise level, so that the mixing processes which con-
tribute most to the time-averaged evolution of the large-scale hydrographic fields
were well resolved. The noise level was lowest in regions where the thermal gra-
dients were smallest, notably in a warm, almost isothermal Atlantic Layer slab
which was sampled at the end of the experiment. This suggests that the shear
probes' the :mal response, discussed by Osborn and Crawford (1980), may also
contrioute to setting the noise level on e measurements.

An upper limit on fully resolved shear spectra is determined by the finite response
length scale of the airfoil shear probes. The universal shear spectrum contains
energy at all scales larger than the Kolmogorov microscale,

lk = 21r(vA/f) 1/4  (2)

although the spectral peak occurs at wavelengths of about lOlk. For e = 1 x
10-6 m 2 s 3 , k is about 0.01 m, and the peak spectral density lies at wavelengths
of about 0.1 m. Some correction can be made for the frequency response of the
shear probes, however in all the data discussed in this paper the correction to e
was lss thani 20%, which is smaller than the potential calibration errors on the
probes themselves. Therefore, in this paper, no spectral corrections have been
applied.

The complete transect of e averaged over 4 hours and 10 vertical meters is shown
in Fig. 4. Time, t, is given throughout this paper in decimal day-of-year (UTC),
where t=1.0 is 00:00 h on January 1,1989. High dissipation rates near the sur-
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Fig. 4. Transect of dissipation rate, logi0(e), throughout the 0 Camp drift. Data

have been averaged over 4 hours and 10 vertical meters.

face between t=101 and 110 are related to high surface stresses resulting from
enhanced diurnal tidal currents which are a well-documented phenomenon in
this region (Hunkins, 1986; PD91). Of more interest to the present paper are

the large, quasi-diurnal bursts of high dissipation in the pycnocline (below about
100 m), which also occur during this period of strong diurnal tides. We shall dis-

cuss the possible causes of these bursts after reviewing the IW field which is as-
sumed to initiate the mixing.

THE INTERNAL WAVE FIELD

The 0 Camp phase of CEAREX was exceptionally well set up for the study of
the IW field (see Fig. 1). Simultaneous measurements were made of the hydro-
graphic and current variability throughout the upper several hundred meters of
the water column, encompassing almost all of the density stratification. A hori-
zontal array provided information on the propagation direction of specific wave
packets, while unique measurements of ice tilt and strain related to the passage
of wave packets were also collected (P. Czipott, pers. comm., 1990). The ice
camp drifted southward from the deep water of the Nansen Basin, up the plateau
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slope, then approximately followed the 2000 m isobath towards the southwest
(Fig. 2). Based on water depth, and the low frequency modulation of both e and
the apparently dynamically significant diurnal tide (PD91), the drift track is di-
vided into four sections. Fig. 5 shows this division, with plois of water depth,
the diurnal-band major axis current speed, and e averaged over the pycnocline,
(epy.). As this figure shows, (epy,) is substantially higher in Period 3 than else-
where, although it is dominated by a few large events. Period 1 exhibits relatively
low turbulence levels. However, as we shall show below, the time-averaged rate
in this period is still much larger than the G89 model would suggest. D'Asaro
and Morison (1991) provide an independent view of the spatial variability of mix-
ing rates relative to topography in the eastern Arctic: their XCP measurements
suggest that the wave shear is significantly higher over topography, but that the
decay scale of the wave field is hundreds of kilometers. On that basis, even the
deep Nansen Basin data in the present study (Period 1) lie within the radiation
field associated with the Yermak Plateau.

The mean profiles of buoyancy frequency, N, dissipation rate, e, and wave field
energy density, Emeas, for the entire experiment are shown in Fig. 6. These pro-
files were made by first mapping the velocity field from the ADCPs to approx-
imate isopycnal coordinates in order to reduce the vertical "smearing" by the
large-amplitude diurnal oscillations. The resultant along-isopycnal averages are
then plotted as a function of mean isopycnal depth. This "semi-Lagrangian" ap-
proach will be used throughout this paper. The energy density, Emeas, was calcu-
lated as

Emeas 1 ( + (U2 ) + (V 2)] (3)=2

where

(rf2) = j N(w)dw (4)

and

(v 2, V) j), (w)]dw (5)

@,1(w) is the power spectral density of RSVP isopycnal displacements,
(%(w), i,(w) are the power spectral densities of orthogonal velocity components,
and f and Wnyq are the local inertial frequency ( 1.45 x 10- s - 1) and the
Nyquist frequency (Wnyq P 1 cycle per hour for RSVP data) respectively. The
vertical velocity variance is negligible compared with the horizontal components,
and is therefore ignored in determining Emeas.
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the division of the experiment into
4 periods.

The highest dissipation rates and energy densities occur in the upper, strongly
stratified pycnocline, with a decay to lower values in the less strongly stratified re-
gion associated with the Atlantic Water core near 250 m. Based on these profiles,
we consider the pycnocline to consist of 3 regions; the strongly stratified upper
pycnocline, 100 < z < 170 m; a transition zone, 170 < z < 220 m; and the lower
pycnocline, 220 < z < 270 m. The wave field experienced by each region in each
period varies widely, with commensurate changes in the mean dissipation rates.

Table 1 presents some basic characteristics of the IW field for each of the time
and depth ranges. Buoyancy frequency changes by a factor of about two from
the upper (U) to lower (L) pycnocline, however the mean profile of N(z) changes
very little from one period to the next. Except for the first period, however, the



Padman et al.

energy density scaled by the N-scaled GM level varies significantly with depth,
indicating that WKB scaling of the wave field is not valid. The measured dis-
sipation rate varies from about 1 x 10- 9 to 20 x 10- 9 m2s- 3 , however, values
of less than 2 x 10- 9m2s- 3 may be seriously biased by noise (see the descrip-
tion of the RSVP, above). The rms internal wave band strain, A0,,,S, is a mea-
sure of the IW-induced variability of N, and is discussed in more detail below.

Table 1: Mean properties of the internal wave field and dissipation rates for the
four time periods shown in Fig. 5, and for mean isopycnal depth ranges of 100-
170 m (U), 170-220 m (T), and 220-270 m (L). Tabulated parameters are: buoy-
ancy frequency, (N) (x10" 3 s-1); mean energy density, (Eneas) (x10- 3 m2 s- 2);

mean energy density scaled by N-scaled Garrett-Munk energy density, E,;
rms internal-wave-band strain evaluated over 10-m mean isopycnal separation,1w

10,rms; equivalent number of vertical modes, j.; measured mean dissipation rate,
Cmeas (xl0- 9m 2s-3 ); and decay time scale, r = (Emeas)/Eneas (days).

1W
Period Depth (N) (Emeas) (Emeas)/Eo A 1,rms j* 6rneas 7

range

1 U 6.7 1.12 0.30 - 6 2.0 6
T 4.8 0.66 0.25 - 6 1.2 6
L 2.9 0.41 0.26 - 6 1.6 3

2 U 6.7 2.23 0.60 0.37 7 7 4
T 4.8 2.66 1.01 0.40 7 4 8
L 2.9 2.24 1.40 0.48 7 2.0 13

3 U 6.7 5.79 1.56 0.43 4 20 3
T 4.8 4.09 1.55 0.51 4 16 3
L 2.9 3.95 2.48 0.53 4 9 5

4 U 6.7 4.16 1.13 0.36 5 6 8
T 4.8 3.33 1.26 0.39 5 4 10
L 2.9 3.54 2.22 0.32 5 2.0 20

GM 5.2 2.9 1.0 0.27 3 - -

A particularly interesting aspect of data from the Arctic Ocean is the close prox-
imity of the semi-diurnal tidal lines to the inertial frequency, f. For example, at
830 N, the frequency of the M2 tidal lne is about 0.97f. Therefore, while the M2
tide is formally a subinertial oscillation, the addition of relatively little negative
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relative vorticity, -1j, to the planetary vorticity can result in the M 2 baroclinic
tide becoming a free wave (i.e. w > f - 1(/21). This effect is discussed in more
detail in D'Asaro and Morison (1991). Perhaps more importantly, it becomes dif-
ficult or impossible to determine the free wave contribution from a near-inertial
spectral peak, especially when measured from a non-stationary ice camp.

Fig. 7 shows frequency spectra for several relevant variables during the ice drift.
These spectra are taken along an isopycnal with a mean depth near 150 m, near
the e peak, for the period 97.0 < t < 113.0. The velocity spectrum is dominated
by diurnal energy, with a secondary peak, as expected, near the inertial frequency.
The cartesian coordinate shear spectrum shows that the diurnal tide is almost
entirely barotropic, so that the near-inertial peak dominates. When the magni-
tude of the shear vector is analyzed (Fig. 7d) the dominant peak is again near-
inertial, consistent with a shear vector that rotates with time rather than showing
appreciable magnitude changes. Other spectra show the principal frequencies of
variability in N, strain, and e, and will be discussed further below. However, for
the moment it is worth noting that the dominant time scales for variability of E
are diurnal and approximately 6 hours, the latter not corresponding to significant
peaks in any of the obvious forcing functions.

With this degree of wave field variability in mind, we now consider higher order
statistics of the displacement field, to see if there might be some obvious reason
for the failure of the G89 model in this environment. One possible candidate is
the effective vertical wavenumber bandwidth, P., which appears in the McCo-
mas and Maller (1981) and Henyey et al (1986) models (Eqs. 9 and 10, below).
In practice, because Pl, is expected to be a function of N, we consider instead the
variability in the "equivalent number of vertical modes", j,, = bNo,I3,/7rN, where
N, is a canonical buoyancy frequency (0.0052 s - 1), and b is the scale depth of the
thermocline (1300 m). A typical mid-latitude value is j. = 3.

Desaubies and Smith (1982) used an analytical approximation (Desaubies and
Gregg, 1981) to the GM spectrum to show that shear variance was simply related
to kinetic energy density by

(Ul) = #I#,I(U 2) (6)

where fi is the cutoff wavenumber in the IW field, which Gargett et al (1981)
suggested was constant at about 0.6 m- 1. Desaubies and Smith argued that the
statistics of mixing in a GM IW field are dependent only on the rms strain, Arms,
where

= ((ms 7/az) (7)

and q is an isopycnal displacement from its mean position. Desaubies and Smith
speculated that the (at the time) apparent constancy of Arms in the open ocean

1.
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Fig. 7. Area-preserving frequency spectra of (a) currents, (b) shear components,
(c) buoyancy frequency, (d) shear magnitude, (e) strain, and (f) pycnocline-
averaged dissipation rate.

indicated that th:. e was related to the saturation of the IW field at a level where
breaking instabilities rapidly drained energy from the waves. Their numerical
simulations indicated that e was extremely sensitive to Ams, as well as being
strongly influenced by the addition of near-inertial shear to the GM level. The
overall result was a model which, while producing plausible diffusivities, was too
sensitive to be usefully applied to field measurements. Nevertheless, the con-
cept that strain might be an important parameter to monitor is valuable, and we
shall show below that the CEAREX dat . set exhibits strain rates which are much
larger than are typical in the mid-ocean thermocline.

__ ,Al
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As with other analyses in this paper, strain is measured in isopycnal-following
coordinates. We have traced 100 isopycnals, having a mean separation of Az =
1.7 m, and spanning the range of 100 to 270 m mean isopycnal depth, through
the RSVP data set between t=96.0 and t=114.0. The original profiles were pre-
filtered to 0.7 m resolution in order to minimize the impact of salinity spiking. A
local value of strain is estimated as

A = (8)

where 6 is the mean separation of isopycnal pairs between which strain is being
estimated. For consistency with G89 we will generally use A10. This choice of
6 = 10 m also reduces the noise associated with interpolation from the equi-
spaced (in depth) original profiles. The time series for finite-differenced strain
between each isopycnal pair is then filtered to remove variability at frequencies
below 0.8f, most of which is due to compression of isopycnals as the barotropic
diurnal tidal currents flow across the plateau slope. The rms strain is then sim-
ply the square root of the variance of A6 evaluated throughout the time and depth
ranges of interest. The value of Arms, based on a 10 m mean isopycnal separation
and after filtering, is denoted A'r,,,,. Values of A lOrms are included in Table 1
for the three depth ranges and the latter three time periods (there were insuffi-
cient profiles in the first period to allow reliable isopycnal tracking). However,
note that the true rms strain (Eq. 7) is very sensitive to the cutoff wavenumber
of the wave field: the choice of #,c=0.63 m-1 is based on Gargett et al (1981),
rather than being substantiated by the present data.

The values of A'1I in Table 1 are all much larger than the 10 m rms strain

expected for a GM ocean with j. = 3. The dissipation rate which the De-
saubies and Smith model therefore predicts is ordc.s of magnitude higher than
in a canonical ocean. There is a trend in periods 2 and 3 towards higher strain
rates with decreasing N. Desaubies and Smith (1982) noted that, with a WKB-
scaled wave field, A6,rms should be independent of depth (and N). As we found
with the N-dependence of energy density, this result suggests that WKB scaling
is inappropriate to the present environment.

Another aspect of the wave field which deviates markedly from the GM76 as-
sumptions is the presence of intermittent, but large-amplitude, wave packets.
Fig. 8 shows the passage of one such packet as measured from a thermistor
moored at 150 m. As suggested by PD91, there is some evidence that the mix-
ing rates are correlated with these wave packets, which are in turn weakly cor-
related with the observed amplitude of the diurnal currents. One hypothesis
is therefore that these waves are generated somewhere over ti". Plateau by the
cross-shelf flow of the diurnal tide, then propagate towards deep water. While the
generation mechanism itself is unclear, this scenario is supported by D'Asaro and
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Morison's (1991) estimates of the decay scale of shear variance away from topog-
raphy, and our own observations of the spatial dependence of e from 0 Camp.
Frthermore, both ice tilt measurements (P. Czipott, pers. comm., 1990) and
estimates of phase propagation from the horizontal array of T, C and current
sensors at 0 Camp indicate a cross-slope phase propagation towards deeper wa-
ter. Coherent wave packets such as this violate the GM76 assumptions both of
random phase between different waves, and isotropy. It is not clear how to take
such packets into account, other than to re-run the HWF eikonal model with such
waves included, however there is a strong possibility that such anomalous waves
contribute substantially to the observed mean mixing rates.

The anisotropic nature of these near-N waves is also apparent in plots of the ver-
tical coherence of semi-Lagrangian alongslope and cross-slope currents as a func-
tion of frequency (Fig. 9). While there is no anisotropy apparent in energy den-
sity when smoothed over a number of days, the cross-slope current is much more
vertically coherent than the alongslope current. Our view is that this relatively
high coherence arises from the passage of these near-N wave packets, even though
the contribution of the packets to the time-averaged near-N energy density is
small.
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Finally, we are left not fully understanding the cause of the 6-hour peak in the
area-preserving spectrum of E (Fig. 7f). We have seen (Figs. 7c and 7d) that no
such peaks exist in the density gradient or shear magnitude spectra. A cross-
spectrum of shear magnitude and N shows no coherence at this frequency. How-
ever, a small but significant coherence is found near 4 cycles/day in the cross-
spectrum of cross-slope shear with N, and similarly with along-slope shear and
N. We postulate that the high frequency wave packets are in some way related
to the 6-hour waves, and that the enhanced mixing at this periodicity is related
to low Richardson number events which occur on time scales which are too short
to be resolved by the present CTD ddta. Fig. 10 shows the band-passed (1/7 to
1/5 hour) isopycnal displacements plotted as a function of mean isopycnal depth,
for the 5-day period when mixing was most energetic. There is evidence of both
downward energy propagation (upward phase), particularly in the first 2 days,
and upward energy propagation for 107 < t < 109.5. The highest dissipation rates
(Fig. 4) occur during the period of upward energy flux in this frequency band.

-50
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-200

-250
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105 106 107 108 109 110

Day-of-year (UTC: 1989)

Fig. 10. Band-passed (1/7< w < 1/5 cph) density field for the period 105 <
t < 110. For presentation, the mean density at each depth has been added to the
band-passed signal.

Carrying this scenario further, we suspect that the 6-hour waves might be gener-
ated at the seabed as a higher harmonic of the cross-slope diurnal tidal current,
propagate upwards into the main pycnocline, then create the near-N wave packets
as a response to the rapidly increasing shear as the vertical wavelength is com-
pressed by increasing N. This would be consistent with the highest values of e
being found below the depth of maximum N (see Fig. 6), since significant energy
would presumably be lost from the upward-propagating waves in this region.
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The proposed mechanism (above) is ciearly highly speculative, and it is probable
that it will remain so in the foreseeable future. The available bathymetry in this
region is totally inadequate for an assessment of the bottom slope in any detail,
while the buoyancy frequency profile of the deep ocean in this region is also inad-
equately sampled. It is therefore not possib!e to construct a robust model of wave
reflection and propagation in this region. Nevertheless, we believe that all the
data point towards a ,'ertical anisotropy in the wave fluxes, at least within certain
frequency bands, which again is a violation of the GM tenets.

DISSIPATION RATE MODELS

We have shown in the previous Section that the wave field during the CEAREX
0 Camp drift differs in many respects fLom the canonical GM wave field. It
would not be surprising, therefore, if models based on the GM parameterization
failed to adequately describe c in such anomalous wave fields. Nevertheless, as
was suggested in the Introduction, an approximate model might still prove valu-
able by overcoming the necessarily limited sampling domain of most microstruc-
ture and XCP surveys. We therefore consider some basic statistical properties
which might allow existing models to be extended to cope with this new data set.
We emphasize, however, that this effort does not imply increased deterministic
knowledge of the processes involved in energy transfer through anomalous wave
spectra. The aim is simply to look for a refined empirical model which might be
useful while the wave field dynamics continue to be explored.

A complete discussion of existing models of c related to properties of the IW
field is given in Wijesekera et al. (1991). We simply provide the relevant
equations against which the CEAREX data will be compared.

The model of McComas and Milller (1981) (hereinafter MM), which is based on
weak resonant interactions between internal waves, is:

EMA! = ( - + 1) r22 2  E (9)

where EGMf (= E/b2 NN,) is the GM dimensionless energy.

The model of Henyey, Wright and Flatt6 (1986) (hereinafter HWF) is based on
an eikonal approach in which the nonlinear interactions are dominated by scale-
separated interactions, with no effect on the large-scale background field. HWF
predict a mean value of e in a GM ocean of

1.671 j 2 2f1
Hw = [ ] fJ bN 2E, cosh (10)
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Note that the forms of eMM and eHwF are similar: as G89 noted, eMM 7
eHWF

for reasonable values of f and N.

Finally, the G89 model, expressed in terms of 10 m shear, Sjo, is
,o9 = 7 x 10- 10 (N' ) (s'

where (SM,) is the variance of shear at vertical scales greater than 10 m in the
GM canonical, N-scaled ocean. If, as G89 assumed, the 10 m shear variance is
simply related to the energy density by

- E(12)

SGM EGM

where E, = Em e as!/b2 NNo, thenfGS9 P" Cwr for the mid-latitude data which
he considered, provided GM canonical values of j, (=3) and b (=1300 in), are
used in calculating % F. G89 also investigated the f-dependence in the other
models, but the test was inconclusive. The evaluation of S20 from the 0 Camp
ADCP data is difficult: Wijesekera et al. (1991) attempt to quantify the shear
variance which is not resolved as a result of the vertical averaging scales for cur-
rents and finite-differencing to obtain shear; however the result is very sensitive to
the choice of cutoff wavenumber, #c, and the slope of the shear spectrum at the
unresolved wavenumbers. For comparison with the measured dissipation rates, we
therefore introduce an "energy-dependent" Gregg model, e,, based on (11) and
(12):

E = 7 x ]( ' -' ° (N 2) E2

fw 7 PM (13)

The essential difference between Gregg's scdling model and the MM and HWF
models is that Gregg's model requires measurements of the velocity shear, while
the MM and HWF models require estimates of the wave field energy density,
Emeas, and the vertical wavenumber bandwidth, expressed as an equivalent num-
ber of vertical modes, j.. Since energy density is relatively easil, obtained from
current meter moorings, the problem is therefore in estimating j,. Gregg's as-
sumption that j,=3 is clearly not universally true: previous work in the Canada
Basin (Levine, 1990; D'Asaro, pers. comm., 1990) indicate that j, ; 30 - 60 in
that region. The Canada Basin is a site where Emeas is only about 10% of GM,
but the shear variance associated with the greater number of equivalent modes is
much closer to mid-latitude levels. We estimate j, in the present data by calcu-
lating the correlation, r, between pairs of isopycnals with a mean separation of
about 10 m. Then, for fc > I,, f3 ; -ln(r)/6 : 6 - 10 m (from Desaubies
and Smith (1982), Eq. 16). The val'ie of j, is then given by bNo,/'tN. The
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measured vertical coherences indicate that j. z 6 during CEAREX, although
it actually varies from about 4 to 7 between periods (Table 1). The MM and
HWF models therefore predict values of e which are about 4 times greater than
for j. = 3. The f-scaling in those two models also implies dissipation rates which
axe a factor of two higher in the Arctic than at mid-latitudes.

It is not known yet why j. in the Arctic is larger than in the deep, mid-latitude
oceans. Nevertheless, if an experiment is somehow able to estimate j,, then pre-
dictions of e could be made based on both E and j,. Table 2 shows how the three
models compare with the measured averages for the same time and potential
density ranges discussed above. In the mean, the energy-based, modified Gregg
model underestimates Emeas by about a factor of 6, although a factor of two im-
provement occurs if the prediction is f-scaled. MM overpredicts emas by a factor
of 3, while HWF underpredicts by a factor of 2.3. However, there is a large scat-
ter in predictive ability for each model between different time and depth ranges.

Ttble 2: Measured mean dissipation rate, Emeas (x10-m 2s- 3 ); and model predic-
tions scaled by Emeas for the time and depth ranges shown in Table 1.

S * 6* f*Period Depth e,as MM EwF E A
range

1 U 2.0 0.55 0.07 0.06
T 1.2 0.33 0.04 0.0 ? -

L 1.6 0.09 0.01 0.01

2 U 7 2.0 0.29 0.06 0.21
T 4 5.0 0.73 0.15 0.73
L 2.0 7.0 1.0 0.21 2.1

3 U 20 1.55 0.22 0.14 0.90
T 16 0.94 0.13 0.09 1.13
L 9 1.56 0.22 0.14 2.11

4 U 6 4.17 0.60 0.25 0.77
T 4 4.0 0.58 0.24 1.03
L 2.0 9.0 1.3 0.53 1.05

Mean 3.02 0.43 0.16 1.02
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The final column in Table 2 is an empirical prediction of dissipation rate, based
on the assumption that the higher strain rates are indicative of higher shear
and/or greater probability of instabilities occurring in the wave field. We assume
that the strain-based predicted dissipation rate, e\, is given by

=A 'rm- \° 4
7 x10- (No) A (14)

1O,rms

i.e. functionally similar to the G89 version (Eq. 11), with rms strain replacing
shear. The 10-m strain in the GM canonical wave field, following Desaubies and

AD

Smith (1982) is A10Srm ' 0.27. The mean predictive ability of this empirical
model is exceptionally good. We emphasize that there is little theoretical justi-
fication for this model, which is a hybrid of Gregg's scaling argument. and De-
saubies and Smith's strain-based numerical simulations. In a GM wave field,
shear is predominantly near-inertial, while the peak in the strain spectrum is
shifted towards higher frequencies. In the present data set, the internal wave con-
tinuum, w > f, is amplified more than the near-inertial band near the plateau,
so that the ratio of rms strain to rms shear is increased. Our results suggest that
variability of N in the present data set will therefore be more important to the
occurrence of the low Richardson number events (which we believe lead to tur-
bulence) than in the mid-ocean thermocline, where variability of shear is most
significant. Since both the G89 and Desaubies and Smith models assume a fixed
relationship between rms shear and strain, it is impossible to determine whether
strain should be the correct variable to track.

With the above caveats in mind, however, the apparent success of strain-based
scaling of dissipation (assuming that the data sets analyzed by G89 all have
canonical strain rates), suggests that dissipation rates can be estimated with some
success from measurements of IW energy density and strain. A mooring with ade-
quate vertical and temporal resolution of the density field might therefore be used
to obtain dissipation rates on sufficiently large vertical and temporal scales, say
50 m and several days. These requirements would be most easily met by suffi-
ciently rapid automatic yo-yo CTD devices with resolutions of about 1 m and a
sampling rate greater than about 1 cycle/hour. The vertical span of the profile
would need to encompass the upper and lower bounds of isopycnal excursions,
which have rms vertical motions of 0(10) m in a GM ocean.
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SUMMARY

Our studies of simultaneous measurements of IW properties and microscale dis-
sipation rates in a region where many of the GM assumptions do not hold (al-
though E, /EGMf = 0(1)), leads us to the following conclusions.

(1) Large values of e are found where the wave field is not well modeled by a
Garrett-Munk spectrum, even where the energy density is comparable to
the canonical values.

(2) Some modelling success might still be achievable in these regions, provided
the vertical wavenumber bandwidth, 3., can be estimated (perhaps from
vertical and/or horizontal coherences in either the velocity or hydrographic
fields). Automated yo-yo CTD profilers and a vertical current meter ar-
ray appears to be the most likely technique for acquiring the required data
from moorings.

We believe that it is still too early to claim even a "first-order" understanding of
the processes by which energy is transferred through the IW spectrum to the dis-
sipation scales. There is, however, some prospect that sufficiently robust empir-
ical models can be developed to allow predictions of e from long-term moorings,
at least to within the accuracy obtainable by extrapolatihg the estimates from
short-duration microstructure programs.
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TESTING THE CRITICAL REFLECTION HYPOTHESIS

Denis Gilbert
Institute of Ocean Sciences, P.O. Box 6000, Sidney, B.C., Canada, V8L 4B2.

ABSTRACT

According to linear internal wave theory, the reflection of internal waves off a bottom of
uniform slope, in a uniformly rotating, uniformly stratified fluid, should lead to energy
enhancement and a cross-isobath alignment of motions at the frequency for which the wave
ray slope equals the bottom slope. Current meter data from the near-equatorial Atlantic
and from the continental rise and slope off Nova Scotia are used to test this hypothesis.

1 INTRODUCTION

The reflection of internal waves off a plane rigid surface differs markedly from the
reflection of electromagnetic or acoustic waves. In Optics or Acoustics, the incident and
reflected wave rays make the same angle with respect to the normal to the reflecting
surface, whereas for internal waves, the incident and reflected wave rays make the same
angle with respect to the vertical. The unusual nature of the law of reflection for internal
waves is a direct consequence of their dispersion relation which states that, for waves of a
given frequency, energy must propagate at a given angle with respect to the vertical. As
linear theory requires frequency to be conserved upon reflection, the angles which the
incident and reflected wave rays make with respect to the vertical must be the same.

Close to the critical frequency w, for which the wave ray slope equals the bottom slope,
simple arguments (Phillips 1977, p.227) show that, upon reflection, the wavenumber,
energy density, and shear associated with the incident waves are greatly amplified, so that
shear instability and energy dissipation are more likely. Phillips (1963) first pointed this
out for inertial waves incident on a bottom of constant slope in a rotating, homogeneous,
inviscid fluid, and later generalised the theory to internal gravity waves in Phillips (1966).
In both cases he assumed that the direction of energy propagation of the incident waves
was normal to the isobaths.

For arbitrary angle of incidence with respect to the isobaths, Sandstrom (1966) pointed
out that whereas the component of the wavenumber vector normal to the isobaths is
generally amplified upon reflection, the component of the wavenumber vector parallel to
the isobaths remains unchanged. Consequently, the major axis of the current ellipses
should become more closely aligned with the cross-isobath direction upon reflection.
Sandstrom (1966, p.78) was the first to report observational evidence of energy
enhancement at w,, using thermistor data from the Bermuda slope (Haurwitz, Stommel
and Munk, 1959) '. lie also performed laboratory experiments which clearly

'Wunsch (1972) also used that data and drew attention to the energy enhancement at we.
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demonstrated the amplification of parcel motions that results from internal wave reflection
off a sloping bottom (figure 21, p.71), and published that work in Sandstrom (1969).

The most recent surge of interest for the problem of internal wave reflection off sloping
bottoms is largely due to the work of Eriksen (1982), who presented observational
evidence of energy and shear enhancement near the critical frequency at a few mooring
sites, and also provided evidence for a cross-isobath alignment of motions near w, in a few
of these cases. In a later paper, Eriksen (1985) explored the implications for ocean mixing
of internal wave reflection off sloping bottoms. He argued that internal wave breaking at
sloping boundaries may cause diapycnal mixing of global oceanic significance, possibly
accounting for Munk's (1966) canonical value of K, ; 10- 4 m 2s- ' in the abyssal ocean.
This possibility was further examined by Garrett and Gilbert (1988).

In section 2 of this paper, we give a brief summary of the linear theory of internal wave
reflection off a bottom of constant slope, in a uniformly rotating, uniformly stratified fluid.
In section 3, we examine current meter data from the Western Boundary Sill Experiment
to try to verify whether a near-bottom enhancement of motions with 3-4 day periods can
bc attributed to internal wave reflection, as Eriksen (1982) suggested. In section 4, current
meter data from the continental rise and slope off Nova Scotia are used in order to look
for evidence of energy enhancement and/or cross-isobath alignment of motions near W,. A
summary and general discussion follow in section 5.

2 THEORY

The dispersion relation for internal waves is given by (Gill, 1982)

W 2 = N2cos2 0 + f 2 sin20 (1)

( N2- 2 1/2

or tan9 = N 2 _ W2 ) , (2)
W2 -f 2 } 2

where N is the buoyancy frequency, f is the inertial frequency, and 9 is the angle which
the wavenumber vector k = (k,e, m) makes with respect to the horizontal. Since the
direction of energy propagation is perpendicular to the direction of phase propagation
(Cg I k) for internal waves, the frequency at which the wave ray slope matches a bottom
slope of tana can be obtained by substituting 9 = 7r/2 - a into (1), yielding

2 N 2  sin a+ 2 cos 2 a.

WC = N a(3)

It can be shown (Eriksen, 1982, Gilbert, 1990) that for constant values of f, N and tan a,
the wavenumber amplification is given by

mr a2 + 2a cos 0, + 1
Mr - 1 a = tan atan0, (4)
mt a2 - 1 5
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where a is a frequency-dependent parameter (2), Oi is the angle which the horizontal
component of ki makes with the onslope direction, and m,, m, denote the vertical
components of the incident and reflected wavenumber vectors respectively. By requiring
that u. ii = 0 at the bottom, where fi is a unit vector normal to the bottom, it can also be
shown that (Eriksen, 1982)

E i) '(5)

and Cr=sin-' (m sin i), (6)

where E,, Er are the energy density of the incident and reflected waves respectively, and

0,, 0, are the angles which the horizontal components of ki, kr make with the onslope
direction. There is a singularity in (4) when a -1 (w - we), so that linear inviscid theory
(5) predicts we should observe enhanced energy density near W, above sloping bottoms. It
also predicts (6) a cross-isobath alignment of motions near w, (Im,/mrl - 0 and hence

, -* 0 or r when a , 1).

3 DATA FROM THE WESTERN BOUNDARY SILL EXPERIMENT

To measure the flow of Antarctic Bottom Water entering the Northwest Atlantic Basin,
the buoy group of the Woods Hole Oceanographic Institution deployed two moorings
between the Ceara Rise and the mid-Atlantic ridge from December 9, 1977 to December 5,
1978 (Whitehead and Worthington, 1982, hereafter WW82). Mooring 636 was deployed at
4-2.5'N, 39-40.6'W, and mooring 637 was deployed at 4°1.3'N, 39'19.0'W. Both moorings
had current meters at 10m, 50m, 100m and 200m above the bottom. The local depth was
4456m at mooring 636, and 4304m at mooring 637 (see Fig. 1).

Eriksen's (1982) most convincing evidence of energy enhancement near w, came from
mooring 636 of this experiment. This is shown here on Fig. 2, where we see that the
near-bottom energy enhancement ranges roughly from 0.005 cph to 0.05 cph (periods
between 20 and 200 hours), with a peak in energy density centered at 0.0117 cph (85.5
hour or 3.56 day period). The inertial frequency at that location is 0.00587 cph (170.3
hour period), so that the energy peak occurs well within the internal waveband at W - 2f.

Following Eriksen (1982) in taking N ; 0.8 cph, and assuming that the bottom slope at
mooring 636 is 0.015, as estimated from the East-West transect shown on Fig. 1, we
obtain w, = (N 2 sin 2 a + f 2 cos 2 a) 1/ 2 , 0.0133 cph. This estimate of the critical
frequency compares well with the energy enhancement shown on Fig. 2.

However, Eriksen (1982, p. 533) pointed out that while the energetic motions with
w z 0.012 cph at mooring 636 could be due to critical internal wave reflection, they
violate one of the basic predictions of specular reflection theory (6), namely that the
major axis of the current ellipses should be oriented normal to the isobaths. Instead the
current ellipses are roughly parallel to the inferred North-South orientation of the isobaths
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Figure 1: Topography in the vicinity of moorings 636 and 637 of the Western Boundary Sill

Experiment, based upon the East-West transect at 40N shown on figure 4 of Whitehead
and Worthington (1982).,

(see Eriksen's figure 9). This is not a trivial discrepancy, as the mechanism leading to
energy enhancement near the critical frequency involves a 'squeezing' of the reflected
wavebeam (relative to the width of the incident wavebeam) in the vertical plane normal to
the isobaths (Phillips, 1977, figure 5.13). It is hard to er.'isage how internal wave
reflection could lead to enhanced motions in a vertical plane roughly parallel to the
isobaths. Further examination of the current meter data from the Western Boundary Sill
Experiment therefore seems warranted.

Comparison with mooring 637

Figure 3 shows the kinetic energy spectra 50m 2, 100m and 200m above the bottom at
mooring 637. A first obvious difference in the kinetic energy spectra is that an inertial
peak (f = 5.87 x 10-' cph) appears to be present at mooring 637, whereas it could not be
discerned at mooring 636 (Fig. 2). A second difference is that while mooring 637 shows
some near-bottom kinetic energy enhancement at w = 0.0117 cph, the energy levels are
not nearly as elevated as at mooring "36; comparing the 50m records from each mooring,
we find that the spectral level at moocing 637 is about 5 times lower than at mooring 636.
The range of frequencies over which we observe near-bottom kinetic energy enhancement
is also narrower at mooring 637.

Nonetheless, since moorings 636 and 637 both display near-bottom energy enhancement at
w = 0.0117 cph, it seems worthwhile to find out whether motions at the two moorings are

'Data from the current meter lon above the bottom were judged to be of lesser quality by NODC
(National Oceanographic Data Center) and so were not sent to us.
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Figure 2: Kinetic energy spectra at 10m ( + ), 50m ( 0 ), 100m (-) and 200m (- - -) above
the bottom at mooring 636 (v = 30). The inertial frequency is f = 5.87 x 10- 3 cph.

correlated at that frequency. Figure 4 shows cross-spectra between the current meter
200m above the bottom at mooring 636, and the current meter 50m above the bottom at
mooring 637 (4256m and 4254m deep respectively).

For the clockwise velocity signals, there is a strong coherence peak at the semidiurnal tide
(not shown here), a few weak peaks near the diurnal tide, and another peak spreading
across four adjacent frequency bins from 0.0117 cph to 0.0146 cph, where the signals are
not significantly out of phase. The latter coherence peak coincides perfectly with the
range of frequencies with the most kinetic energy within the internal waveband 50m above
the bottom at mooring 637 (Fig. 3). The temperature signals are also correlated in the
0.0137-0.0146 cph band, where they are not significantly out of phase.

Thus Fig. 4 shows that for w ; 0.012 cph, the motions at mooring 636 are coherent and
not significantly out of phase with those at mooring 637, some 40 km away. Significant
coherences within the internal waveband over horizontal distances of the order of a few
tens of kilometers are rare but not unheard of in the deep ocean. For example, Fu (1981)
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Figure 3: Kinetic energy spectra 50m ( o ), 100m (-) and 200m (- - -) above the bottom
at mooring 637 (v = 30).

obtained significant coherences over horizontal separations up to 70 km at mid-latitudes
for the inertial band. For the mid-latitude internal wave model proposed by Garrett and
Munk (1972), the horizontal distance at which the coherence drops to 0.5 is given by

58 m. 3 cph
SXo.5 = w2 - f 2 )1/2) (7)

where w and f are expressed in cph. For w = 1.17 x 10- 2 cph and f = 5.87 x 10 - 3 cph,
this yields AX0 .5 = 17 kin, so that the coherence should be less than 0.5 (or the squared
coherence should be less than 0.25) at a separation of 40 km. Wunsch and Webb (1979)
showed that at low latitudes, currents are generally coherent over smaller spatial scales
than would be predicted by (7), so that the observed coherence is rather surprising. It
becomes even more puzzling when we consider the fact that based on the critical reflection
hypothesis, the observed field of motions, if dominated by the reflected wavefield, should
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be unusually rich in motions with small horizontal and Nertical scales 3 near the critical
frequency (4). Cross-spectra between various pairs of current meters at mooring 636
suggest that the dominant vertical scales of motion at W 0.12 cph are also large
(Gilbert, 1990).

1i 1 1 - T i l

e 0.8- Clockwise velocity 0.8  Temperature

0.64 0.61.-4 °40
10 0.4- - 0.4-

. 2 . 02.02.0.

0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
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Figure 4: Cross-spectra between the current meter 200m above the bottom at mooring 636,
and the current meter 50m above the bottom at mooring 637, both of which were at the
same depth. The cross-spectrum for clockwise velocity is shown on the left, and that for
temperature is shown on the right. A positive phase means that the signal at mooring
637 leads the signal at mooring 636. The dashed line represents the 95% significance level
for zero true coherence on the upper plots, and the 95% confidence intervals for phase are
shown on the lower plots (v = 30).

3The horizontal and vertical scales of motion should be reduced by the same factor upon reflection,
because conservation of frequency implies that tan 0, = tan 0,, which in turn implies that mr/rn, := h/,,

where m and K are the vertical and horizontal components of the wavenumber vector respecti'ely
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Rotary spectra and the ratio P++/P__

Using the clockwise (u-) and anticlockwise (u+) rotary velocity components

a- =(u-iv)/V'2, (8)
1+= (u + iv)/vr (9)

as in Miiller et al. (1978), we computed the clockwise and anticlockwise autospectra P__
and P++ at each current meter. For linear, freely-propagating internal waves, the ratio of
anticlockwise to clockwise kinetic energy should be given by (Fofonoff, 1969)

P- () (10)

On Fig. 5, we plotted P++/P_ as a function of frequency at 10m, 50m, 100m and 200m
above the bottom at mooring 636. Interestingly enough, we find large deviations from (10)
in the range of frequencies for which near-bottom kinetic energy enhancement is obserxed.
More interesting still, we find that in the neighbourhood of the energy peak (w ; 0.012
cph), the largest departure from (10) occurs at 10m above the bottom, followed by the
departures at 50m, 100m and 200m in that order. There thus seems to be a one to one
corre pondance between kinetic energy enhancement and the degree of departure from
(10) near w - 0.012 cph. Eriksen (1982, p.533) hinted at that when he mentioned that
"the current ellipses at w - 2f are more narrow than would be expected from linear
internal waves, even if waves were unidirectional."

Trapped waves with w > f?

Thompson and Luyten (1976) have provided evidence for the existence of Rhines' (1970)
bottom-trapped waves at frequencies lower than the inertial frequency f. In the present
context however, what is interesting about those waves is that the maximum allowed
frequency, N sin a - 0.8 cph x 0.015 , 0.012 cph, is larger than f, so that bottom-trapped
motions could in principle occur in the frequency band normally reserved to
freely-propagating internal waves (f < w < N). The possibility of bottom-trapped waves
with w > f has not received much attention in the literature, but Huthnance (1989) points
out that "continuity of mode forms near w = f (Huthnance, 1978) suggests that trapped
waves approaching w = f from lower frequencies should continue as nearly-trapped waves
for w exceeding f. The bottom trapped waves of Rhines (1970) in realistic contexts are
obvious candidates." ltuthnance and Baines (1982) called for a more detailed
investigation of the pheiomenon, pointing out tbat we do not know much about the
possible radiational energy losses of those waves when N sin a > f.

The bottom-trapped motions described by Rhines (1970) are rectilinear, implying the
ratio of anticlockwise to clockwise kinetic energy
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Figure 5: Ratio P++/P__ at 10m ( + ), 50m ( o ), 100m (-) and 200m (- - -) above the
bottom at mooring 636 (v = 30). The theoretical ratio (10) for linear, freely propagating
internal waves, is also shown for the purpose of comparison. The 90% confidence intervals
assume a Fisher's F distribution for the ratio of two independent chi-squared distributions
(Jenkins and Watts, 1968, p.85), and so may not be appropriate.

P++ =1. (11)
__

Looking at Fig. 5, we find that at 10m and 50m above the bottom, P++IP__ is closer to
1 than to the internal wave line for w < 0.025 cph. This result prompted Gilbert (1990) to
try to verify whether the orientation 0 of these motions changes with frequency according
to

0 = cos - 1  Nsin a (12)

as in Rhines' theory 4 , but he found no significant changes of ellipse orientation within
that range of frequencies. Thus whereas Eriksen's (1982) interpretation of the 3-4 day
motions at mooring 636 as critically reflected internal waves fails to explain why the

4The notation used here differs from that of lRhines, 0 is measured counterclockwise frum the onslope
direction to ensure consistency with the earlier definition of 0 given in section 2.
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current ellipses near w, are not perpendicular to the inferred North-South orientation of
the isobaths, an interpretation of tiobe motions in terms of Rhines' internal edge waves
(Gilbert, 1990) fails to explain the lack of turning of the current ellipses with frequency.

4 DATA FROM THE CONTINENTAL RISE AND SLOPE OFF NOVA
SCOTIA

The Bedford Institute of Oceanography deployed several moorings on the Scotian Rise
and Slope during the 1970's and 1980's. Those moorings were deployed for the purpose of
studying sub-inertial motions (e.g. Louis et al., 1982, Smith and Petrie, 1982), not for the
purpose of studying internal wave reflection off sloping bottoms. Consequently, the vertical
spacing between current meters is large at most moorings; there is usually only one current
meter in the first 100m above the bottom, which does not allow us to study the vertical
structure of some of the small-scale processes known to occur above sloping topography
(e.g. Thorpe et al., 1990). Nevertheless, it should be possible to look for evidence of
near-bottom energy enhancement at v; i, a manner analogous to Eriksen (1982).

Tables 1 and 2 provide a convemrient summary of the current meter data used here, and
Fig. 6 shows the location of the moorings. More detailed information about the data can
be found in Lively (1979a, 19791) and 1984).

A list of criteria

Linear internal wave reflection theory l)redicts we should observe energy enhancemeit (5)
at the critical frequency ,) above slo)ing topogral)hy. For the data set under
consideration here, we could try to verify this by looking for

la) a spectral peak above the background energy level at w,,

1b) near-boundary energy enhancement at , for instruments at different heights above
the bottom, but on the same mooring

1c) near-boundary energy enhancement at , for instruments at the same depth, but on
different moorings

1d) a spectral level at ,), larger than that given by the GM79 model spectrum.

The other major prediction of liiear interial wave reflection theory is that current ellipses
should tend to orient themselves normal to the isobaths upon reflection (6). llemce we
should also look for

2) a pronounced anisotropy at u, the major axis of current ellipses being oriented in
the cross-isobath direction.

Citerion la was used by Sandstrom (1966) and Eriksei, (1982) at mooring sites where the
critical frequency was well separated from the energetic tidal and inertial frequencieb.
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Such a separation is necessary if we wish to unambiguously interpret a spectral peak at W,
as the signature of internal wave reflection. Unfortunately, Lo is close to f or M2 at nearly
all the mooring sites considered here (see table 3), so that criterion la was only used at
mooring S2.

Table 1: Mooring locations on the Scotian Rise and Slope. The letter S stands for the Shelf
Break experiment, and R stands for the Risex experiment.

Mooring Latitude Longitude Bottom depth Current meter depths
S1 42 048.6'N 63030.0'W 250m 20,50,100,150,230m
S2 42046.8'N 64000.0'] 250m 20,50,230m
S3 42045.0'N 63030.0'W 710m 230,500,690m
S4 42 040.4'N 63030.0'4 1010m 50 ,100, 150,500,690,990m
S5 42 030.5'N 63030.0'W 1550m 50,150,1530m
S6 43000.5'N 63030.0%W 170m 20,50,100,150m
S7 42 041.7'N 64000.0'W 710m 230,690m
S8 42 001.0'N 63030.014/ 2550m 70,1500,2530m
R1 41 020.0'N 63058.0'1,V 3600m 200,500,1000,2900,3500m
R2 41027.0'N 63030.0'147 3600m 3500m
R3 41000.0'N 65000.8% 3600m 3500m
R4 41038.6'N 640 17.7'WV 3000m 200,1000,2900m
R5 41053.2'N 64031.7'W 2500m 200,500,1000,2400m

Table 2: Mooring deployment periods on the Scotian Rise and Slope. Periods A to G are
from the Shelf Break Experiment, and periods II to J are from the Risex Experiment.

Mooring Deployment Recovery Length of
deployment (late date deployment Comments

period (dd/mm/yy) (dd/mm/yy) (days)
A 13/12/75 06/04/76 115 Mooring S1 only.
B 06/04/76 05/07/76 90 S1 and S4 only.
C 05/07/76 17/10/76 104
D 17/10/76 16/12/76 60
E 16/12/76 02/04/77 107
F 02/04/77 09/07/77 98
G 09/07/77 04/01/78 179 Data from S1,

S2,S4,$6 only.
if 04/11/80 03/03/81 119 Poor data return,

except for R5.
1 03/03/81 06/05/81 64 Poor data ;3turn.
J 06/05/81 24/10/81 171 Good data return,

I_ except for R5.
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Figure 6: Map of the Scotian Rise and Slope showing the location of moorings used in this

paper. The letter S refers to moorings from the 1975-78 Shelf Break experiment, R refers to

moorings from the 1980-81 Risex Experiment, and mooring PlA is Petrie's (1975) mooring

1A. The hydrographic data used to compute the Brunt-Vaisala frequency N(z) comes from

subarea 33 of Drinkwater and Trites (1987), whose perimeter is shown here as a thin line.

Criterion lb was also used by Eriksen (1982) at a few moorings. It can be used at most of
the moorings considered here, as the majority of them have two or more current meters in
the vertical. However, we should bear in mind that this criterion fails to take into account

the slantwise propagation of internal wave energy, as pointed out by Gilbert and Garrett
(1989), and so may be ambiguous. In all cases where we have used criterion 1b, the kinetic
energy spectra from instruments at different depths were normalised with respect to a
common value of N, taking into account WKB scaling (Briscoe, 1975, Gill 1982, p.300).

Criterion lc was used by Thorpe (1987a, figure 11) at a site where the critical frequency
was close to the inertial frequency ( - f), a situation where this criterion should be

most useful due to nearly horizontal wave rays. It was used in a few cases for the present
data set.
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Criterion ld does not on its own constitute evidence of critical internal wave reflection,
but it could be used to support successful tests based on other criteria, especially when
w, > A12, where there is some degree of universality in the spectral levels (Wunsch, 1976).
Fu (1981) has shown that such universality does not exist near f in the deep ocean, so
that criterion ld was not used at moorings where w, - f. It was not used at moorings
where w, - M2 either, since internal tides were excluded from the internal wave model of
Garrett and Munk (1972). Application of criterion ld was thus limited to mooring S2 for
the present data set.

Criterion 2 was successfully used by Eriksen (1982) for mooring sites on Muir Seamount
and the New England continental slope, but failed at mooring 636 of the Western
Boundary Sill Experiment. Application of criterion 2 was limited here to those moorings
where w, was appreciably greater than f (near-inertial motions are quasi-circular and so
the orientation of their 'major' axis tends to be less stable).

Hundreds of autospectra were computed from the data set described in tables 1 and 2,
some of which are shown in Gilbert (1990). A summary of his results is given in table 3.

Table 3: Results of tests aimed at determining whether critical internal wave reflection was
observed at moorings from the Shelf Break and Risex Experiments. In column 1 the critical
frequency (in cph) at each of the mooring sites is written in parentheses. For the purpose of
comparison, note that f ,- 0.056 cph, and A12 = 0.081 cph. In columns 2 and 3, the capital
letters refer to the mooring periods listed in table 2, and the numbers in parentheses refer
to the criteria described in this section.

Successful Unsuccessful
Mooring tests tests Comments

(95% significant) (not significant)
S1(.086) D(2),E(2),G(2)
S2(.132) D(ld,2),E(1,2), D(la),E(la),

G(ld,2) G( la)
$3(.07u) E(2),F(2) D(1b,2),E(lb,1c),

F(lb,lc)
S4(.060) C(lb),E(lb) F(lb) Large bump at 1000m
S5(.058) C(lb,lc),F(lb) D(lb,lc),F(lc)
S6(.059) F(lc)
S7(.076) C(lb,2),E(2), D(lb,2),E(lb)

F(lb,2)
S8(.057) F(lb) sig. at 80% level
R1(.055) J(lb) K.E.(3500m) > K.E.(2900m)
R2(.056) K.E.(w' = f)- R1 (3500m)
i3(.055) K.E.(w = f) - R1 (3500m)
R4(.056) J(lc) J(lb)
R5(.057) _l(lb)
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5 SUMMARY AND DISCUSSION

The WBSE data

In section 3 of this paper, we reexamined data from mooring 636 of the Western Boundary
Sill Experiment to try to verify whether the energetic 3-4 day motions seen at that
mooring are due to critical internal wave reflection, as postulated by Eriksen (1982). We
pointed out, as Eriksen did, that those motions are parallel to the inferred orientation of
the isobaths, not normal to them, thus violating one of the predictions of specular internal
wave reflection theory.

We also pointed out that the 3-4 day motions are coherent over a horizontal scale of at
least 40 km (Fig. 4). Such a large coherence scale appears to be inconsistent with the
transfer of energy to smaller scales that should occur due to internal wave reflection.
Gilbert (1990) also showed that the 3-4 day motions at mooring 636 are coherent over a
vertical scale of at least 200m, and the measured phase leads or lags are generally not
significantly different from zero over that distance, implying large vertical scales of motion.

Another puzzling feature of the 3-4 day motions at mooring 636 is that they do not
satisfy the consistency relation (10) for freely-propagating internal waves (Fig. 5). At 10m
and 50m above the bottom, those motions are essentially rectilinear, apparently more
consistent with the pvediction of Rhines (1970) for internal edge waves (11). Agreement
with Rhines' theory is quite limited however, as the orientation of those quasi-rectilinear
motions does not change with frequency according to (12) (Gilbert, 1990).

Perhaps this illustrates the need for a careful investigation of the manner in which the
consistency relations for internal waves should change as we approach a sloping bottom.
Let us consider here the inviscid problem of a wave which reflects off a vertical wall with
€, 0 0. The onslope velocity component of the incident and reflected waves must cancel
each other at the wall in order to satisfy the boundary condition of no normal flow, but
the alongslope velocity component of the incident and reflected waves are phase-locked at
the wall and add up constructively. Consequently, in the immediate vicinity of a vertical
wall, motions should be rectilinear, and we should have P++/P__ = 1 instead of
P++IP-_ = [(w - f)/(w + f)] 2 (Barry Ruddick, personal communication). We need to
verify whether this result would still hold above sloping topography, as it may help
explain the variation of P++/P__ with height above the bottom 5 observed at mooring
636 for example (Fig. 5). Preliminary results suggest that a slope 2 to 3 times steeper
than 0.015 might be consistent with Fig. 5, but that would leave the energy peak at
w ; 0.012 cph shown on Fig. 2 unexplained.

Our lack of success in trying to inteipret the 3-1 day motions at mooring 636 is largely

due to our poor knowledge of the topography. Figure 1 is only based on an East-West

SMooers (1973) suggests that depaitule flor the ratio (10) may be a good indicator of the validity of
the low spatial coherence hypothesis of Fofonoff (1969)

AA €;'
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transect, and so cannot tell us what is the orientation and magnitude of Vh. The most
detailed bathymetric map available for the area, produced by Moody et al. (1979) and
shown on figure 2 of WW82, does not hell) us solve that problem either due to its lack of
resolution.

Proximity to the equator (f , 10's 1 at 4°N) and the possibility of equatorially trapped
waves (Moore and Philander, 1977, Eriksen, 1980) may also complicate the analysis, a fact
that was overlooked by Gilbert (1990) and probably deserves closer attention. Among
other things, the traditional approximation of neglecting the horizontal compone:Lt of the
Earth's rotation vector S1 in the equations of motion may have to be reexamined near the
equator.

The Scotian Slope data

In section 4, historical current meter data from the Scotian Rise and Slope were used in
order to look for evidence of critical internal wave reflection. To that end, a set of criteria
was proposed and discussed, and then applied to the data. Energy enhancement and/or
cross-isobath alignment of motions near w, was found to be significant at the 95% level in
some cases (see table 3), but was generally not very pronounced. This could be due to the
overall concavity of the Scotian Rise and Slope (Gilbert and Garrett, 1989), but other
factors may also affect the likelihood of observing energy enhancement at the critical
frequency.

Gilbert (1990) suggests that when N sin a < f at a given mooring site, so that w, f (3),
the orientation of the isobaths could be one such factor. The linear reflection laws of
Eriksen (1982), valid on an f-plane, predict that maximum wavenumber amplification
upon reflection should occur for onslope incident energy propagation (i.e. 0, = 0).
However on a f-plane, due to the turning latitude effect, near-inertial motions are more
likely to have , - ±r/2 when the onslope direction is poleward (e.g. Kroll, 1975). This is
roughly the case on the Scotian Slope, possibly explaining the overall absence of
pronounced energy enhancement at w, , f 6 (note that W, : f at 9 of the 13 moorings in
table 3). A more quantitative investigation of this phenomenon could probably be carried
out using the wave functions of Munk and Phillips (1968).

Finally we would like to draw the attention of the reader to the non-linear, specular
reflection theory of Thorpe (1987b), which raises the possibility of singularities for wave
ray slopes different from the bottom slope. When a train of finite amplitude internal
waves travelling in a vertical plane normal to the slope gets reflected, resonance between
the incident and reflected waves is possible at second order for a bottom slope less than
0.15 and a wave ray slope less than 0.58. This condition is met almost everywhere on the
Scotian Rise and Slope for example. Gilbert (1990) offered an 2xplanation for the unusual

6 Fu (1981) found that the largest energy peaks at v = f in the abyssal ocean occured in the vicinity of the
Mid-Atlantic Ridge, which runs roughly North-South, so that the onslope direcion is oial and near-inertial
waves are more likely to have 0, ; 0.
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size of the A 4 peak seen at Petrie's (1975) mooring 1A (see Fig. 6) in terms of that

theory, and also explained some aspects of the observations at moorings S3 and S7 using

Thorpe's theory. Unlike the first order resonance, higher order resonances should be

unaffected by the boundary concavity criterion of Gilbert and Garrett (1989).

Acknowledgments

The useful advice and patience of Chris Garrett during the few years spent at Dalhousie
University are gratefully acknowledged. Financial support for this work was provided by
the U.S. Office of Naval Research.

REFERENCES

Briscoe, M.G. 1975. Preliminary results from the trimoored Internal Wave Experiment
(IWEX). J. Geophys. Res., 80: 3872-3884.

Drinkwater, K.F. and R.W. Trites, 1987. Monthly means of temperature and salinity in
the Scotian Shelf region., Canadian technical report of fisheries and aquatic sciences
No.1539, iv + 101p.

Eriksen, C.C. 1980. Evidence for a continuous spectrum of equatorial waves in the Indian
Ocean. J. Geophys. Res., 85: 3285-3303.

Eriksen, C.C. 1982. Observations of internal wave reflection off sloping bottoms. J. Geo-
phys. Res., 87: 525-538.

Eriksen, C.C. 1985. Implications of ocean bottom reflection for internal wave spectra and
mixing. J. Phys. Oceanogr., 15: 1145-1156.

Fofonoff, N.P. 1969. Spectral characteristics of internal waves in the ocean. Deep-Sea Res.,
16: 58-71.

Fu, L.L. 1981. Observations and models of inertial waves in the deep ocean. Rev.
Geophys. Space Phys., 19: 141-170.

Garrett, C.J.R. and W.H., Munk 1972. Space-time scales of internal waves. Geophys. Fluid
Dyn., 2: 225-264.

Garrett, C.J.R. and D. Gilbert, 1988. Estimates of vertical mixing by internal waves re-
flected off a sloping bottom. In Small-scale turbulence and mixing in the ocean.,
J.C.J. Nihoul and B.M. Jamart (editors), Elsevier, Amsterdam, pp. 405-423.

Gilbert, D. 1990. Theory and observations of internal wave reflection off sloping topography.
Ph.D. Thesis, Dalhousie University, xix + 183 pp.

Gilbert, D. and C.J.R. Garrett 1989. Implications for ocean mixing of internal wave scat-
tering off irregular topography. J. Phys. Oceanogr., 19: 1716-1729.

Gill, A.E., 1982. Atmosphere-Ocean Dynamics. Academic Press, New York,
662 pp.

Haurwitz, B., H. Stommel and W.ll. Munk, 1959. On the thermal unrest in the ocean.
In The atmosphere and sea in motion, Rossby Memorial Volume, B. Bolin (editor),
Rockefeller Univ. Press, pp. 74-94.



Testing the Critical Reflection Hypothesis

lluthnance, J.M. 1978. On coastal trapped waves: analysis and numerical calculation by
inverse iteration. J.Phys.Oceanogr., 8: 74-92.

Huthnance, J.M. 1989. Internal tides and waves near the continental shelf edge. Geophys.
Astrophys. Fluid Dynamics, 48: 81-106.

Huthnance, J.M. and P.G. Baines 1982. Tidal currents in the Northwest African upwelling
region. Deep-Sea Res., 29: 285-306.

Jenkins, G.M. and D.G. Watts, 1968. Spectral analysis and its applications., Holden-Day,
Oakland, California, 525 pp.

Kroll, J. 1975. The propagation of wind-generated inertial oscillations from the surface
into the deep ocean. J.Mar.Res., 33: 15-51.

Lively, R.R. 1979a. Current meter and meteorological observations on the Scotian Shelf:
December 1975 to January 1978. Volume 1: December 1975 to December 1976.
Bedford Institute of Oceanography data series report BI-D-79-1, 280 pp.

Lively, R.R. 1979b. Current meter and meteorological observations on the Scotian Shelf:
December 1975 to January 1978. Volume 2: December 1976 to January 1978. Bedford
Institute of Oceanography data series report BI-D-79-1, 368 pp.,

Lively, R.R. 1984. Current meter observations on the Scotian Rise for November 1980 to
October 1981. Canadian technical report of hydrography and ocean sciences no. 50,
156 pp.

Louis, J.P., B.D. Petrie and P.C. Smith 1982. Observations of topographic Rossby waves
on the continental margin off Nova Scotia. J.Phys.Oceanogr., 12: 47-55.

Moody, R., D.E. Hayes and S. Connary 1979. Bathymetry of the continental margin of
Brazil, Map number 832, Am. Assoc. Petrol. Geol., Tulsa, Oklahoma.

Mooers, C.N.K. 1973. A technique for the cross spectrum analysis of pairs of complex-
valued time series, with emphasis on properties of polarized components and rotational

invariants. Deep-Sea Res., 20: 1129-1141.
Moore, D.W. and S.G.LI. Philander 1977. Modeling of the tropical oceanic circulation, in

The Sea, vol. 6, pp. 319-361, Interscience, New York.
Miiller, P., D.J. Olbers and J. Willebrand 1978. The Iwex spectrum J.Geophys.Res., 83:

479-500.
Munk, W.H. 1966. Abyssal recipes. Deep-Sea Res., 13: 207-230.
Munk, W.H. and N. Phillips 1968. Coherence and band structure of inertial motion in the

sea. Rev.Geophys.Space Phys., 6: 447-472.
Petrie, B. 1975. M2 surface and internal tides on the Scotian shelf and slope. J. Mar. Res.,

33: 303-323.
Phillips, O.M. 1963. Energy transfer in rotating fluids by reflection of inertial waves. Phys.

Fluids, 6: 513-520.
Phillips, O.M., 1966. The Dynamics of the Upper Ocean. Cambridge University Press,

New York, 261pp.
Phillips, O.M., 1977. The Dynamics of the Upper Ocean, 2nd ed., Cambridge University

Press, New York, 336 pp.
Rhines, P.B. 1970. Edge-, Bottom-, and Rossby waves in a rotating stratified fluid. Geo-

phys. Fluid Dyn., 1: 273-302.
Sandstrom, H., 1966. The importance of topography in generation and propagation of

internal waves. Ph.D. thesis, University of California at San Diego, xi + 105 pp.
Sandstrom, It. 1969. Effect of topography on propagation of waves in stratified fluids.

Deep-Sea Res., 16: 405-410.

69



Gilbert

Smith, P.C. and B.D. Petrie 1982. Low-frequency circulation at the edge of the Scotian

Shelf. J. Phys. Oceanogr., 12: 28-16.

Thompson, R.O.R.Y. and J.R. Luyten 1976. Evidence for bottom-trapped topographic
Rossby waves from single moorings. Deep-Sea Res., 23: 629-635.

Thorpe, S.A. 1987a. Current and temperature variability on the continental slope. Phil.

Trans. R. Soc. London, Series A, 323: 471-517.

Thorpe, S.A. 1987b. On the reflection of a train of finite amplitude internal gravity waves

from a uniform slope. J. Fluid Mech., 178: 279-302.

Thorpe, S.A., P. Hall and M. White 1990. The variability of mixing at the continental

slope. Phil. Trans.R.Soc.Lond.A, 331: 183-194.

Whitehead, J.A. and L.V. Worthington 1982. Tlhe flux and mixing rates of Antarctic Bot-

tom Water within the North Atlantic. J. Geophys. Res., 87: 7903-7924.

Wunsch. C. 1972. The spectrum from two years to two minutes of temperature fluctuations

in the main thermocline at Bermuda. Deep-Sea Res., 19: 577-593..

Wunsch, C. 1976. Geographical variability of the internal wavefield: A search for sources

and sinks. J. Phys. Oceanogr., 6: 171-485.

Wunsch, C. and S. \Webb 1979. The climatology of deep ocean internal waves. J. Phys.

Oceanogr., 9: 235-243.

70



OBSERVATIONS OF NEAR-INERTIAL INTERNAL WAVES AND MIXING IN THE
SEASONAL THERMOCLINE

Charles C. Eriksen
School of Oceanography WB-10
University of Washington
Seattle, WA 98195

ABSTRACT

Wind forced near-inertial internal waves reduce gradient Richardson number sufficiently
to induce microscale mixing within the seasonal pycnocline in eastern North Pacific
observations. The nat buoyancy change inferred from a moored time series of upper
ocean observations implies turbulent dissipation rates sufficient to damp near-inertial
kinetic energy in the mixed layer in several days.

INTRODUCTION

Witid stress is well recognized as a source of both internal gravity waves and mixing in
the upper ocean. Swiftly moving wind systems generate internal waves whose phase
speeds match their translation speeds. Since most storms translate at speeds at the high
end of the range of possible internal wave phase speeds, storm-generated internal waves
tend to be only slightly superinertial in frequency (Kundu and Thomson, 1985;
D'Asaro, 1989). While the details of how stress applied by the wind is transmitted
through the upper ocean are far from clear, both observations and theoretical
considerations point to nearly linear variation of stress through a surface mixed layer
such that stress effectively vanishes only slightly deeper than this layer. Because there is
a relatively sharp transition between acceleration in the mixed layer and the stratified
region beneath it, strong shears are found at the base of the mixed layer. This shear, in
turn, is responsible for continued deepening of a mixed layer, as recognized in model par-
ameterizations (Pollard et al., 1973; Price et al., 1986). As this shear is dominated by
variance at slightly superinertial frequencies, motions in the seasonal pycnocline take the
form of propagating near-inertial internal gravity waves. Observations in the OCEAN
STORMS program discussed here indicate that these wind-forced internal waves are
sufficiently energetic to account for mixing implied by temporal evolution of upper ocean
density structure.
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UPPER OCEAN CURRENT AND DENSITY STRUCTURE

The observations discussed here come from a single 10-month Profiling Current Meter
(PCM) record collected at 470 35' N, 1390 23' W in the eastern North Pacific. The record
begins August 22, 1987 and ends June 12, 1988, spanning the complete fall and winter
cooling periods and the beginning of spring warming. The PCM profiled every 4 hours,
averaging currents, temperature, and electrical conductivity into 5 m thick bins from 195
to 35 m depth. The subsurface PCM mooring was set 15 m deeper than in other
deployments in anticipation of the severe sea state expected (and encountered) in the
OCEAN STORMS site. The upward profile transit routinely took 20 to 25 minutes to
complete, as the instrument used an electric pump system to control its buoyancy, hence
its movement along the upper section of the mooring. The unique feature of PCMs is that
they collect simultaneous current and density profiles at fixed locations in the upper
ocean over extended periods. The instruments are capable of collecting roughly 2000
profiles, depending on the depth to which profiles are made, the strength of ambient
currents and water temperature. Details of the design and operation of the engineering
prototype PCM are given in Eriksen et al. (1982).

Upper ocean density structure at the OCEAN STORMS site is dominated by two
pycnoclines; the upper seasonal one is dominated by temperature stratification while the
deeper permanent one is dominated by salinity stratification. During the course of the
winter, the shallow seasonal pycnocline is not merely eroded by storm-induced mixing, it
itself is deepened as the mixed layer deepens, as indicated in the density record
contoured in Figure 1. From August through October, the PCM does not profile high
enough in the water column to encounter the mixed layer. Over the course of November
and December, the mixed layer both deepens and becomes more dense. The seasonal
pycnocline maintains a thickness of about 20 m during this period whereafter it merges
with the permanent pycnocline ceitered at roughly 115 m depth. Although the
stratification remains weak at depths shallower than about 90 m from January through
March, this part of the water column is not strictly uniformly well mixed. Restratification
begins in April and by late May a new seasonal pycnocline is evident.

The current structure which accompanies these changes in stratification is dominated by
near-inertial motion,. (inertial period 2n/f=16.254 hr) concentrated in the surface mixed
layer but occasionally penetrating both the seasonal and permanent pycnoclines. The
stick vector plot of currents in Figure 2 reveals an enormous burst of kinetic energy
starting in early October at the shallowest depth profiled and appearing later deeper,
suggestive of a wave packet propagating. High current largely is confined to the mixed
layer as it deepens in November and December, but more bursts of high current in the
pycnocline occur in January and less intensely through April and even May.

Near-inertial frequency motions dominate the spectrum of current for all depths and are
particularly evident in the October storm event. An expanded view of density and current
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is given in Figures 3 and 4 covering the period September 12 to November 1, 1987. Of
particular interest is the jump in stratification structure which takes place on October 4
just beneath the seasonal pycnocline at depths from 55 to 75 m (Figure 3, left panel).
This jump from weak to stronger stratification coincides with the appearance of strong
near-inertial rotary currents (Figure 4, left panel). Density surfaces oscillate vertically
with amplitudes as much as 10 m peak to peak with a near-inertial period in the week
following the onset of the current burst. Interpreting these as due to vertical motion is
consistent with regarding the horizontal currents as due to near-inertial internal wAves
with horizontal wavelengths of a few hundred km. A less prominent transition in density
structure and near-inertial current activity can be found on September 14 at 40 to 50 m
depth. Horizontal advection is inadequate to explain these density changes (as will be
discussed below). The implication is that water within the pycnocline undergoes in-
complete mixing in response to internal wave activity, that is, mixing which is
sufficient to reduce but not eliminate stratification locally.

This mixing is accomplished through elevation of shear and accompanying reduction of
Richardson number. Reduction of Richardson number is associated with shear
instability, an idea confirmed by microstructure observations of turbulent mixing (Peters
et al., 1988). Vertical shear increases to amplitudes as high as 0.02 s in near-inertial
waves in the October 4 storm (Figure 5). Elevated vertical shear is also apparent in the
top three depth bins for which a 10 m centered first difference can be evaluated (45, 50,
and 55 m) in the September 14 storm. Shear also tends to be somewhat higher within the
permanent pycnocline, a feature presumed due to amplification of horizontal currents as
internal waves propagate through a region of stronger stratification (e.g., WKB scaling).
Gradient Richardson number Ri is the square of the ratio of buoyancy frequency N to
vertical shear u , hence a plot of a vector whose components are N and u can reveal
variations in both the stability of flow and the potential and kinetic energy associated
with stratification and shear. Such a plot is given in Figure 6, where the slope of each -1

stick vector relative to the time axis is the instantaneous inverse Richardson number Ri
During both the October 4 and September 14 storms Ri reduces to unity or less.

ESTIMATES OF MIXING RATES

The sub)stantial changes in upper ocean stratification evident in this OCEAN STORMS
PCM record strongly suggest that mixing is important in effecting these changes.
Compared to other regions of the ocean, mesoscale eddy activity in the eastern North
Pacific is relatively weak. Nevertheless, advection sti!l makes significant contributions
to density changes observed at a fixed location. In order to infer quantitative estimates of
mixing activity from a sequence of profiles at a fixed location, estimates of horizontal
and vertical advection of density must be added to the observed rate of density change so
that their sum can be considered the convergence of microscale turbulent density flux.
Consider the equations for density and horizontal momentum conservation:
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Pt + u.Vp + wpZ = -<w'p'> (1)

-1
u + u.Vu + wu + 29xu + p0 Vp = -<u'w'> (2)

where the primed quantities represent turbulent microscale variations and brackets the
averages of their products. The first equation states that density changes following a
particle are due solely to the vertical convergence of vertical turbulent transport of
density. The second states that horizontal acceleration of a fluid parcel in a rotating
frame of reference is balanced by a pressure gradient force and vertical convergence of
vertical turbulent transport of horizontal momentum. Turbulence is considered as any
process producing non-vanishing correlation between flow components at time and space
scales too small to be resolved by the observations. It is also assumed that only vertical
transports of density and momentum by turbulence are important. At low frequencies the
momentum balance is geostrophic provided turbulent stresses 't=-po<u'w'> can be
ignored. This simplification is poorest within the mixed layer and is of questionable
validity within the seasonal pycnocline. Nevertheless, we make it here in order to obtain
estimates of horizontal density gradients through the thermal wind equations. Then (1)
may be written as

-1

Pt " fP0g (uv - vuZ) + wPZ = -<w'P'> (3)

where f = 20-sin(latitude) is the inertial frequency. Since we are without direct
measurements of vertical velocity, we must assume that turbulent mass fluxes <w'p'>
effectively vanish at some depth beneath the mixed laye r so that w can be estimated from
(3) for the restricted depth range for which density is assumed to change purely
advectively. Since w must also effectively vanish at the sea surface because changes in
sea level are very slight, w can be interpolated for the mixed layer and the depth rarnge
within the pycnocline for which mixing is presumed of potential importance. Thf. linear
inviscid modes of oscillation of a rotating stratified fluid over a fla! bottom are separable
into vertical and horizontal structures. The equation governing vertical structure
indicates that w is linear within a mixed layer, giving another constraint on the shape of
w(z). Matching deep w behavior inferred from the non-mixing version of (3) with a
linear portion in the mixed layer which vanishes at the sea surface makes possible an
estimate of vertical density advection throughout the region where turbulent transport of
density is important. Hence, through the assumptions stated, the PCM record of current
and density profiles is sufficient to estimate the substantial derivative of density (all three
terms on the left side of (3)). Vertical integration of density change following a fluid
parcel then gives an estimate of turbulent mass flux <w'p'>, that is, the quantity whose
convergence represents mixing.

Although mixing events in the seasonal pycnocline take place on time scales identical to
those of storms, even the relatively weak mesoscale eddy environment of the OCEAN
STORMS site requires quantities to be smoothed temporally to yield stable estimates of
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advective contributions. A filtered density record is given in Figure 7 where fluctuations
with periods shorter than 20 days have been suppressed. Unfortunately, the number of
weights necessary for the filter shortens the record at each end, so much so that the
low-passed record begins at the onset of the October 4 storm. Contours initially within
the seasonal pycnocline descend over time before eventually outcropping, indicative of
mixing within the pycnocline. The second half of the record (lower frame, Figure 7)
reveals little mixing activity and a tendency for the pycnocline to rise and fall due to
mesoscale fluctuations. The time derivative of low-pass filtered density shows both the
late fall season increase in density within the mixed layer and accompanying decrease
beneath it (Figure 8). The horizontal advective contribution to density, assuming vertical
shear is purely geostrophic, is comparable in size to local temporal chance (Figure 9).
This term (the second in equation 3) is positive within the mixed layer from late October
through mid-January, indicating that !,Inter water is being imported laterally into the
region. This tendency is nearly cancelled within the pycnocline by upwelling during this
period, as evidenced by negative values of the vertical advection term wp (Figure 10). It
may be noted that any error in estimating horizontal advection will necessarily tend to be
cancelled by an error in the opposing sense in implied vertical advection as (3) suggests.

-1
The vertical buoyancy flux -gp0 <w'p'> implied by the sum of the terms on the left side
of equation (3) is given in Figure 11. While uncertainties in estimating advection make
the second half of the record somewhat suspect, there is clearly a large upward buoyancy
flux within the mixed layer during the fall cooling period. This flux averages roughly

.7
10 Wkg at the surface. This buoyancy flux is presumed carried by convective activity
within the mixed layer. Buoyancy flux changes sign at the base of the mixed layer so
that buoyancy is transported downward within the seasonal pycnocline and deposited
there. This downward flux reaches values as high as 10 W/kg. If turbulent mass flux is
expressed as being diffusive, following the definition <w'p'> = -Kp,4hep the implied
diffusivity K within the seasonal pycnocline falls in the range 1-5x10 m /s. These are
reasonable values for what is expected in a highly smoothed description of mixing.

DISCUSSION AND CONCLUSIONS

The implication of the downward buoyancy flux within the seasonal pycnocline is that
turbulent dissipation must be high enough to decay the observed near-inertial internal
wave activity substantially. The "dissipation method" (see Gregg (1987), Osborne
(1980)) declares that flux Richardson numbers in stratified turbulence are limited to
values of about 0.2. Measurements in strongly sheared equatorial currents indicate the
ratio of buoyancy flux to turbulent kinetic energy dissipation to be about 0.1 (Peters et al.,
1988). Hence the dissipation associated with turbulence is 5 to 10 times the buoyancy
flux being effected. If the buoyancy flux of turbulence in the seasonal lycnocline is
0(10 W/kg), then the dissipation rate of kinetic energy must be 0(10 W/kg). This is
the rate at which energy is presumed removed from near-inertial motions in the OCEAN
STORMS observations. A typical kinetic energy content of mixed layer near-inertial



Eriksen

STORMS NP 00 (<OS>,,- 4 8 o)

o000 24000 250 00 26000 27000 24000 29 or do 987198833

350 1

599 0

a49m

409 95

5099 15

1349 15

1594 m

584415

209 815

19 AUG 26 AUG 1 SEP 17 SEP 27 SEP 7005 17 OC 2 6 30 6 NOV 16 NOV 26 NOV 6 DEC 16 DEC 26 DEC JAN 5 JAN198 1/198

STORMS NP o (<O.S>,p-48O)

yeor doy 1988
1600 2500 3500 4500 5500 6500 75 00 8500 9500 10500 15500 12500 13500 14500 15500 16500

350

599 1

1598 15

1848 50

2nd8

15.kN' 25 SAN 4 FEB '4 E.3 24 5EH 5 VAR 5 VAR JP ,.R 4 P- 4 APR 2 AP 4VA VA' 241 VA 3 -N 3

Figure 7. Low-pass filtered potential density 0o contoured as in Fig. 1. The start and end of the
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motions is the layer depth h times half the mean square current current. A decay time for
mixed layer near inertial motions can then be estimated as the ratio of this to the rake of
kinetic energy removal by turbulent dissipation within the pycnocline:

-1 2
t = hh' <u/2>/e

where h' is the depth range over which dissipation at rate e is taking place within the
pycnocline. This decay time works out to be about one week in the OCEAN STORMS
observations.

The decay of near-inertial motions in the mixed layer is presumably governed by two
processes: wave propagation and frictional damping. Calculations of D'Asaro (1991)
demonstrate that both linear and nonlinear model simulations of the October 4 storm
leave near inertial energy in the mixed layer much longer than the OCEAN STORMS
observations indicate. His best simulation of the character of the descending internal
wave beam include frictional damping. Our calculations of the amount of mixing that
takes place as the mixed layer and seasonal pycnocline descend together imply that
enough turbulent dissipation of kinetic energy must take place at the same time to extract
a considerable fraction of the energy in the internal wave field. This energy is lost
ultimately to dissipation at molecular scales. The picture that emerges is that a
substantial portion of the near-inertial internal wave energy that would result from a
given storm wind stress pattern is lost to friction through generation of shear at the base
of the mixed layer in the top 20 m or so of the pycnocline. Actual wave amplitudes are
reduced accordingly and a significant fraction of the work done by wind stress goes into
raising potential energy of the water column through mixing by shear instability within
the upper pycnocline.
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INTRODUCTION

The interrelation between the large vertical-scale motion field, the fine scale (1-100 m) field, and the
micro-scale is poorly understood. It is thought that motions become significantly non-Gaussian at verti-
cal scales shorter than about 50 m (Holloway 1983). However, "non-Gaussian" is an extremely general
description of a flow field. In this work we examine the fine-scale statistics of the vertical strain field in
the sea. Strain is here defined as the vertical gradient of isopycnal vertical displacement. The objective is
to identify a specific class of probability density functions (pdfs) which characterize the fine scale field
during its transition from highly skewed (micro-scale) to Gaussian (large scale) behavior.

Theoretical studies of non-linear processes often assume quasi-Gaussian statistics. The non-linear condi-
tion is approximated through a perturbation expansion about a zeroth-order Gaussiar state. If a joint-
normal form is assumed for the pdf of vertical displacement of isopycnal pairs, i(pi),i(p), it is easily
shown that the pdf of isopycnal separation Azij is also Gaussian (Desaubies and Gregg 1981, henceforth
DG81). There is always a finite probability that Az,(t) will vanish, resulting in singular values for verti-

c o 0(p) - 0(p)
cal gradients of passive scalars Dz =  Az(t) . From a mathematical viewpoint, a Gaussian zeroth

order state is an awkward starting point for the description of the fine scale field.

Knowledge of the pdfs of isopycnal separations enables the statistical modeling of a number of
phenomena of physical interest in addition to vertical gradient fluctuations. Measurements of variance
can be used to infer skewness, kurtosis, etc., once a form for the separation pdf is established.

This work complements an introductory paper, Pinkel et al 1991, (Henceforth P91). A more complete
discussion of statistical matters is presented in Pinkel and Anderson 1991 (PA91).

Isopycnal displaceir nt data obtained in the 1986 experiment PATCHEX are used in this study. The
data are derived from a series of nine thousand CTD profiles from the sea surface to 560 m, obtained over
an 18.75 day interval. Three types of isopycnal separation statistics are accumulated. Probability density
functions of isopycnals separation are formed at varying mean separations Az. These statistics are gath-
ered in both fixed depth (Eulerian) and fixed density ( semi-Lagrangian ) reference frames. In addition,
discrete probability functions are formed, describing the probability of occurrence of varying numbers of
isopycnals in fixed vertical intervals.

The discrete probability distributions formed in the fixed depth intervals are found to be very nearly Pois-
son for vertical bins, H, of order 3 m and greater. The corresponding Eulerian and Lagrangian pdfs of
isopycnal separation are very nearly gamma pdfs, as would be predicted from elementary Poisson theory.
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This surprising finding enables the simple modeling of strain and gradient statistics in both reference
frames. A single parameter, X, specifies the entire description at all vertical scales Az > 3 m.

The measurements and data are described next. Statistical results are then presented, followed by discus-

sion of these findings.

MEASUREMENTS

The data considered here are a set of 9,000 CTD profiles from the surface to 560 m. These were obtained
during October 1986 from the Research Platform FLIP. FLIP was located at 340N, 127 0W, approxi-
mately 500 km west of Point Conception, CA. Position was maintained to within 300 m by a two point
moor. Water depth at the site is 4 km.

The CTD's used are Seabird Instruments model SBE-9s. Two such instruments are profiled. The upper
unit is cycled from the surface to 320 m. The lower system covers the depth range 250-560 m. Profiles
are repeated at 3 min intervals. The drop rate of the sensors is approximately 3.5 m/s. It is not necessary
to pump water through the conductivity cell to achieve adequate spatial resolution at this drop rate.

Following a time response correction to the temperature sensor, the vertical resolution of both the tem-
perature and conductivity sensors is limited to 2 m by a low pass filter (Sherman 1989). Density profile,
are then produced. A set of 560 isopycnals, of mean separation 1 n, is then followed for the duration of
the data experiments (Fig. 1). The experimental approach is discussed in greater detail in P91.

The three hour record presented in Figure 1 represents a small portion of the 18.75 day data set. In it one
sees a general trend toward decreasing isopycnal depth, associated with the baroclinic tide. Superim-
posed on this trend are higher frequency (1-2 cph) internal waves. These are extremely coherent with
depth. Against this large scale background, the fine scale straining of the density field is seen. Isopycnals
converge to form "sheets" of high vertical gradient and diverge, forming low gradient "layers". The typi-
cal time-scale for the fine scale variation appears to be from one-half to several hours, in this short record.

Protagonists in the present study are:

the isopycnal separation Azij - z(pi,t) - z(pj,t)

the normalized separation 7ij(t) = Azj(t)/Az1j

and the finite difference strain 7ij = 7ij(t) - 1.

The finite difference strain can be thought of as an approximation to the actual strain, qri(p,t)/az, where
-_ z(p,t) - i(p). Alternatively, separation variance statistics can be considered as precise estimates of

the structure function

00

F(A) = lrt f (I - cos kTz)S(k)dk= < I (Az) > - 1 (Tennekes and Lumley, 1972). 1)
-0
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Fig. 1. An example of isopycnal depth fluctuations as seen in the PATCHEX data set. The statistics of
isopycnal separation are the focus of the present study.

Here, S(k) is the vertical wavenumber spectrum of strain.

Obviously, no technique can produce quality estimates of the spectrum at high wavenumber in the
absence of accurate measurements at small vertical scale Az. Evenly spaced estimates of F at intervals of
A7 = n meters, n = 1, N, result in a wavenumber spectral estimate with Nyquist wavenumber of .5 cpm,
and wavenumber resolution of N- 1 m (McKean, 1974).

Three aspects of the measurements, sensor noise (e), resolution, and statistical precision impact the present
discussion. Sensor noise results in error in the estimates of density profiles. Noise has both correlated
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and uncorrelated aspects. At separations greater than a few mete:s, the noise which influences the esti-
mate of one isopycnal is independent of that influencing another. Strain variance estimates are biased in
the presence of noise.

<Az 2> 2< 2>+ 2)

The error in the estimate of the depth of a given isopycnal isapproximately .25 m rms in the PATCHEX
data set. This corresponds to a strain variance bias of .12 at Az = 1 m, decreasing to .005 at Az = 5 m.
Thus the bias can be as large as 20 % of the total signal at Az = I m (assuming the errors associated with
two closely spaced isopycnals are indeed uncorrelated). Since the variance bias decreases as z-2 while
the strain signal decreases more nearly as z- 1, (Fig. 7) random error quickly becomes insignificant.

Noise has an effect on the pdfs of separation. The observed pdfs are a convolution of the true pdf of
separation with the pdf, presumably Gaussian, of the noise. Thus, observed pdfs will be broader than the
true, with their variance increased by the variance of the noise. This effect will be significant at small
separation Az.

Resolution is a concern when considering closely spaced isopycnals. One would expect to observe fewer
than the actual number of instances of close isopycnal spacing (small y) in pdfs of separation. Con-
versely, fewer observations of "many isopycnals found in a fixed size bin", are expected in the discrete
probability functions presented below. The finite resolution of the CTD is particularly damaging to the
present study given that the spatial autocorrelation of strain transitions from positive (...if two adjacent
isopycnals are squeezed into a sheet, it is likely that the immediate neighboring isopycnals are being
drawn into the sheet...) to negative (...if five isopycnals are being drawn into a sheet, it is likely that there
will be an absence of isopycnals, a layer, five m away) at about the resolution scale of the CTD, 2 m.

At sufficiently small scales the strain correlation is high and positive. A principal conjecture of P91 is
that strain statistics approach log-normal form in this region. If the log-normal regime indeed exists, it
occurs at scales unresolvable by the present CTD. Further exploration of the log-nomal issue awaits
improved instrumentation.

Statistical precision is often a concern when trying to compare pdfs estimated from data with classical
functional forms. In this work, estimates of pdfs are formed in four 100 m depth ranges, 100-200 through
400-500 m. Thus, 9x10 5 measurements (9,000 profiles * 100 isopycnals) are available for each 100 m
estimate. At issue is the fraction of these points that is statistically independent. This question is
discussed by Briscoe (1977) in his investigation of the Gaussianity of the horizontal velocity and vertical
displacement of the IWEX data set. From numerical simulations Briscoe finds that the effective decorre-
lation time for displacement is of orde: 1/2 day. A nineteen day displacement time series would consist
of 38 independent samples, corresponding to 76 degrees of freedom.

The situation is more complicated for the strain field, given lie significance of non-linear distortion at
small scale. P91 demonstrate that the characteristic lifetime of "layer" events (y > 1) is shorter titan
"sheet" events (y < 1). The number of independent estimates of y < 1 events per unit time is less than that
of y > 1 events. Monte Carlo simulations of the strain field will not model this effect appropriately unless
the bi-spectrum of the field is properly specified.
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In PA91 an attempt to estimate the statistical precision of the strain, as a function of y itself, is presented.
The variability of independent estimates of the strain pdf, from depth to depth at fixed 7, is used to deter-
mine the effective number of degrees of freedom. When large mean separations, Az 3 m, are con-
sidered, the observations are consistent with an 100 degree of freedom process, more or less independent
of 7 . At very small mean separations, variations in statistical stability with I is clearly seen. The effec-
tive number of degrees of freedom varies from 80 to 100 as 7 increases from .2 to 2.

THE PDF OF STRAIN AND DISPLACEMENT

Joint pdfs of strain and displacement have been formed using the PATCHEX isopycnal displacement
time series. The pdfs are formed for isopycnal pairs of mean separation Az = 1 - 50 m. For each mean
separation, the pdfs are binned into 100 displacements (± 50 m) by 100 strains (y = 0 to 5) in four depths
zones (7 = 100 - 200 through 400 - 500 m).

Two sets of joint pdfs are produced. Lagrangian pdfs are formed by tracking the evolution of specific iso-
pycnals pairs (pi,pj) through the 19 day data set. Corresponding Eulerian pdfs are formed by tracking the
separation between that pair of isopycnals, separated in the mean by Az, which is spanning a specific
fixed depth, zo, at each instant of time. The Eulerian study is repeated for fixed depths of 100-500 m, at 1
n increments. The resulting pdfs are averaged into 100-200 through 400-500 m bins, in correspondence
with the averaging used in the Langrangian study.

A representative joint pdf of strain and displacement is presented in Fig. 2. The pdf is formed in a
Lagrangian frame, using isopycnals of mean separation 3 m. Although not clearly apparent in the figure,
it can be shown (PA91) that the data are consistent with the assumption that the joint pdf is separable, and
that the pdf of average displacement Thj = ( (,) + 1 (p))/2 is Gaussian. The pdf of strain is clearly non-
Gaussian, with observations of close isopycnal spacing (7 < 1) more frequent than those of large separa-
tion (I> 1).

THE PROBABILITY DENSITY FUNCTION OF STRAIN

The joint pdfs previously discussed can be integrated with respect to displacement to produce uni, . iate
pdfs of strain. Strain pdf are presented in Figs. 3 and 4 for the semi-Lagrangian and Eulerian frames
respectively, for mean separations of Az of 1-10 m. Sample pdfs have been formed for mean separation as
great as 50 m. At scales greater than 10 m these appear very nearly Gaussian. Nevertheless, skewness and
kurtosis estimates are significant to separations of order 30 m.

The observed pdfs have been fit to a variety of classical forms, including Rayleigh, Weibull, log normal
and gamma. Significant discrepancies are subjectively apparent in all comparisons, with notable excep-
tion of the gamma pdf, which fits very well (Figs. 3, 4, light curves). The gamma pdf has the form

G(x) = xce-Ox 3)
w(a)

with mean <x> = ct/1 and variance <x2> -<x> 2 = c/p2 (eg. Papoulis 1984)
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Fig. 2. An example of a joint probability denotes function of strain and displacement. This estimate was
formed in a semi-Lagrangian frame, considering isopycnal pairs separated in the mean by 3 m. The
PATCHEX data are consistent with the hypothesis that strain and displacement are independent
quantities, with displacement obeying Gaussian statistics.

The semi- Lagrangian data are constrained to have <y> = 1, <Az> = Az, by initial choice of isopycnals.
Hence a = PAz. The fits presented in Fig. 3 are thus one parameter fits, with sample variance matched to
the model variance. The Eulerian observations are not constrained to unity mean. The fits are thus two
parameter fits. The observed mean and variance are used to set model pdf parameters in Fig. 4.

The model gamma pdf is seen to fit the observations well in the 200-300 m depth range, except at separa-
tions less than 4 m. The fits are comparable in the other depth rangeo, with the exception of the 300-400
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Fig. 3. Probability density functions of normalized separations, y, formed in a semi-Lagrangian frame,
for mean isopycnal separations 1-10 m. Light lines give model gamma pdfs, constrained to have unity
mean and the observed variance. Data from 200-300 m depth zone are presented.
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Fig. 4. Probability density functions of normalized separation, y, as in Fig. 3 except formed in an
Eulerian frame. Light lines Mive model gamma pdfs, constrained to have mean and variance identical to
the observations. Data from 200-300 m depth zone are presented.
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m interval, where the Lagrangian pdfs appear distorted at small y over a range of Az = 3 - 7 m. This issue
is addressed in PA91. The fits could be improved by employing a least squares fitting procedure. How-
ever, optimizing the fit is not the point of the present exercise.

Gamma pdfs are associated with the classical theory of Poisson processes. They describe the statistics of
separation between the occurrence of Poisson "events" (Papoulis, 1984). If, indeed, a simple Poisson
statistics describe the non-Gaussian behavior of the fine scale field, the problem of modeling the motion
field in this regime can be significantly advanced.

POISSON STATISTICS

Poisson statistics describe the occurrence of discrete "events". If the probability of occurrence of these
events is uniform and the occurrence of one event in no way influences the occurrence of any other
events, Poisson statistics will apply (Papoulis, 1984). The Poisson probability function gives the proba-
bility that the number of events which occur in a dimensional interval of length H will equal any specified
value, k.

P(n = k I H) - (XH)keH4)k!

The Poisson probability function has the interesting property that the mean number of "events" occurring
in an interval H, XH, is equal to the variance in the number of events.

It is not clear exactly what constitutes a "Poisson event" in the contex, of the fine scale variability in the
thermocline. We have tracked a set of isopycnal surfaces with mean spacing arbitrarily chosen to be I m.
A Poisson-like investigation can be conducted, tracking the number of isopycnals which are found to
occur in fixed depth bins of varying size H. This is done for the four 100-m depth ranges used in the
previous studies. The results are presented for the 200-300 m range in Fig. 5. Not surprisingly, the mean
number of isopycnals found in a depth bin of thickness H is H, given our initial choice of isopycnals
mean separation. The oceanic signal is seen in the variation of the higher moments with H. To facilitate
comparison with the classical Poisson distribution, which is constrained to have mean equal to variance,
the observed probability functions are re-scaled in terms of equivalent "Poisson events", ft = Xn. Here fi is
the number of "events" alleged to occur in the fixed depth bin, n is the observed number of isopycnals,
and X is a scale factor chosen such that the mean number of "events" is equal to the event variance. The
fitting of model Poisson probability functions (Fig. 5, light line) to the data is accomplished by setting the
model mean equal to the rescaled observed mean, H. The fit is impressive, with significant discrepan-
cies apparent only in 1 and 2 bin sizes.

THE THERMOCLINE AS A POISSON PROCESS

The excellent fits of the Gamma and Poisson pdfs to the observations at vertical scales greater than 3 m
encourages the adoption of Poisson statistics as a zeroth order model for the thermocline. In this section
we review relevant aspects of Poisson theory. Subsequently we discuss observed departures from the
predictions of the Poisson model, and why these departures are to be expected in a real fluid.



Pinkel and Anderson

300 -400 m Depth Range
Poisson Blind Fit

0.2 Rescaled Observations
Poisson Distribution

Bin Size, m

w 2
Z

0
LL0I=1 - ---
cc

0

LL 5

09

, ,I I I II
0 8 16 24 32 40

NUMBER OF OCCURRENCES OF "POISSON EVENTS"
Fig. 5. Probability function of the number of isopycnals found in fixed depth bins of size H = 1-10 m.
The observed number of isopycnals is re-scaled by the factor %, such that the sample mean equals the
variance. The light curve gives a theoretical Poisson distribution. Data from the depth range 300-400 m
are presented here.
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Papoulis (1984) notes that the statistics of separation of Poisson events take two distinct forms. If two
adjacent events are considered at random, the gamma pdf

G(Az 1 1, X) = ke-Az/F(1) 5)

describes the separation statistics. However if the two adjacent random points are constrained to bracket
some fixed point, zo, the pdf of separation is given by

_ 
2Aze-AZ

G(Az 12, X) = . 6)

The added constraint of requiring the points to bracket a fixed point alters the statistics.

We identify (6) as the appropriate pdf for isopycnal separation in an Eulerian frame, at the fixed depth zo.
Expression (5) is the appropriate semi-Lagrangian separation pdf, for a mean separation A- = A-'. When
considering the pdf of distance between an arbitrary random point and one removed by (n - 1) intermedi-
ate points, the order of the appropriate gamma pdf is simply increased e.g.,

G(Az I n,k) = XAzn - le Mz 7)
r(n)

The continuous observations presented here are consistent with the interpretation that Poisson "events""
occur every k-1 meters. Thus the discrete parameter n can be replaced by its continuous equivalent
.= X ..

(X&zVx*e 4"AzGL(Az I Az, X) = X (*) 8)r(x*)

) X(XAz)l* + e _9G"(AzIz'X) = P(X*+ 1) =yGL(AzIz,) 9)

The skewness seen in the semi-Lagrangian frame reflects the relatively passive advection of the density
field by the velocity field, on the fine scale. Isopycnals which find themselves close together experience
nearly identical advecting velocity fields. Hence they remain together for a relatively long time. The
Eulerian pdf is less skewed than its semi-Lagrangian counterpart, for a given mean separation Az. This
reflects the fact that when isopycnal pairs are traveling closer together than average, they are less likely to
span a specific reference depth than when they are farther apart. Not surprisingly, the chance of spanning
a given point while simultaneously having separation Az increases linearly with Az. This result is
reflected in equations 5,6 and 8,9, and is demonstrated for arbitrary strain pdfs in PA91, under the
assumption that strain and displacement are independent quantities.

The immense power in the Poisson model results from the fact that the single dimensional parameter
X (m-') describes the variability of strain not just at a particular vertical scale Az, but at all scales.
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Thus, mean isopycnal separation is given by

<AzL> = z 10)

<AzE>- *+1=z k-

Separatior variance is:
<&Z2>L - Z- <ATQ2>L - * / X =Z ?I]

1-
<Az2 >P - <Az> 2 = <A112 >E =k* + -L-=Yz /XL+ 1/Vk 11)

The growth of variance with mean separation is linear. If this pattern were seen in the data down to arbi-
trarily small separation, it would correspond to a white vertical wavenumber spectrum of strain,

S.(k) = -: m k>0

S7(k) = 0 k=0 12)

The corresponding isopycnal vertical displacement spectrum is of k- 2 form.

THE DOMAIN OF VALIDITY OF THE POISSON MODEL

One anticipates departures from the Poisson model at both large and small vertical scales. This can be
seen by considering the variance of isopycnal separation, Eq. 11, which is predicted to grow linearly
without bound as mean separation increases. This behavior is a consequence of the fact that the model
k-2 vertical wavenumber spectrum of displacement extends to arbitrarily low wavenumber. In a finite
depth ocean, the gov'!rning physics will surely change as the scale of the waveguide thickness is
approached, resulting in a departure from Poisson behavior.

At small vertical scales, of order X-1, the model itself becomes inconsistent. The Eulerian separation
variance fails to vanish at Az = 0. This corresponds to a limit of infinite strain variance in the Eulerian
frame as the vertical scale tends to zero. The Poisson model Cox number presented in Table I also
becomes singular at small scales.

There is a simple interpretation for these a-physical aspects of the Poisson model. The lack of predicta-
bility is central to th concept of a Poisson process. The occurrence of a specific Poisson "event" in no
way influences the occunence of subsequent events. However, at sufficiently small scales in the ocean
one expects the strain field to be correlated. The oceanic strain spectrum cannot be white. It presumabiy
is band limited, wth a oandwidth which is the inverse of this correlation scale. To the extent that a "sheet
and layer" model or t .c .train field is valid, one expects the autocorrelation function of strain to assume
negative as well ap positi-e values. (If a large number of isopycnals is found concentrated in a given
region, a "sheet", it is likely that there will be a relative absence of isopycnals, a "layer" nearby.) A purely
Poisson model is not appropriate at small vertical scales, where the strain field is correlated.
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Discrepancies between the observations and the idealized Poisson model can be seen in plots of observed
variance vs. mean separation. These are presented in Figs. 6 and 7 for both the Eulerian and semi-
Langrangian studies. Data are presented to vertical separations of 50 m.

Focusing attention on the semi-Lagrangian separation variance, Fig. 7 c,d, disagreement with the Poisson
model is found at both smaller and larger scale. At small scales, the variance first increases more
rapidly than Az1 (Az < 4 m), then mor,- gradually (z > 4 m). This corresponds to the positive and nega-
tive regions of strain correlation, as sensed by the low resolution CTDs used in the experiment.

At large ceparations, the variance increase never does approach the Az+1 Poisson form, except perhaps in
the 100-200 m depth range. Simple simulatons suggest that this discrepancy is related to the depth varia-
bility of the wavefield. Isopycnal displacement variance changes significantly with depth, as a result of
the changing profile of Vaisala frequency. HKB theory suggests that at depths removed from the sea sur-
face or sea floor,

<N2>(Z) = <n2> 0 No 13)

(Garrett and Munk 1972).

While this classical expression is only approximately correct for the PATCHEX data, it could be used to
rescale (WKB stretch) the displacement field to produce a data set more nearly homogeneous in depth.
This has not been done here, in the interest of presenting the basic results in a model independent format.

A related check on the applicability of the Poisson model is to examine the variabilitLin the observed
estimate of X, the Poisson "constant", as a function of bin size H or mean separation Az. This is presented
in Fig. 8, for the fixed depth Poisson study and the semi-Langrangian isopycnal separation study. At 10
m scales X has a minimum value of approximately 1.1 m-1. Slight increases in this constant are apparent
at both small and larger scales. Again, the finite correlation of the strain field is thought to cause the
small scale departure from ideal Poisson behavior. The non-homogeneity of the wavefield with depth is a
suggested source of the discrepancy at large scale.

THE MODELING OF VERTICAL GRADIENTS

If one abandons the assumption of Gaussianity, it simplifies the modeling of vertical gradients in the ther-
mocline. There is no need to linearize about small departures from the mean gradient. Recalling the
expression for the instantaneous gradient of a passive scalar,

z -"

interest is focused on the statistics of g(t) = -l(t). If p(j) is an arbitrary pdf of 7 (p(7) - 0 for y < 0), then

g(g) = p( C')/p2 gives the corresponding pdf of the scalar gradient.

Using this approach, one can derive general expressions for quantities of interest.
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Fig. 6. Isopycnal separation variance as observed in semi-Lagrangian (a,b) and Eulerian (c,d) frames. A
Poisson model would indicate a linear increase of variance with range.
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The Eulerian mean gradient is given by:

00

hO~ AO _ f_ Y-'tg (y~ I Ez-)dt

AAO AO

=Aj 1jgE(71 )d
Az 0

00

=AOJ f pL(71 'K)d7,= Al 14
= -- 14)AY 0 Kz

Here, we make use of the fact that pE(7) = ypL(7) is a general result, applying not only to the Poisson pro-
cess (PA91). Also, the Eulerian Cox fine scale number

<(A-)2>E / .. >2 15)Az A. z E=15

000
fy-2pE( z = f IpL(7 Az) d = L

0 0

In a semi-Langrangian frame, the mean gradient is seen to be

Ao AOj r Iz e-lL'T --Azp(7116)

Similarly,

00 00

AO -2>L A0> 2 = J y2pL(7/I Az)d7/(J y-IpL(71 z z)d7)2  17)
Az Az 0 0

These results are independent of the specific form of the separation pdf p(0I Az).

Here we have demonstrated that the pdf of separation are very nearly gamma pdfs at vertical scales
greater than 3 m. A summary of the corresponding model pdfs for strain and vertical gradients, as well
as expressions for the Cox numbers are presented in Table 1. Note that, over the range of validity of this
model, the fine scale Cox number is of the order two or less, far below values typically encountered at
microstructure scales.
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TABLE 1. Poisson Model Results

X* =Az-X =Az/Ez A= 1/k

Semi Lagrangian Eulerian

Strain, y pL( I EZ) = % (I - zez)-
)F(*)

Vertical Gradients, gj gL(g I "Z) = ( eg( I "z) =
i(X,*) .F(* + 1)

Cox Number CL = (X* - 1)/(X* -2) CE =*/(X* - 1)

The Poisson model pdfs can be tested against existing observations of fine scale gradients. The observa-
tions of Gregg 1977, DG81 are presented in Fig. 9. Using a single value Ae/Az for Gregg's local mean
gradient, and the parameter X< = 1.1 m-1 set by our Eastern Pacific 1986 observations, it is seen that
Gregg's central Pacific observations, taken nearly a decadeearlier, are well fit by the model. Significant
discrepancies are seen only at small differencing intervals Az. Here, separation statistics deviate from the
Poisson-gamma model, perhaps approaching a log-normal form. In addition, negative temperature gra-
dients are sometimes seen in Gregg's observations. These intrusive/overtum events are outside the scope
of the present model.

SUMMARY

A series of 9000 CTD profiles from the surface to 560 m has been used to study the statistics ot the fine
scale strain field in the thermocline. A set of isopycnals, of 1 m mean spacing, is tracked for the 18.75
day duration of the observations. Three statistical studies are performed. Isopycnal separation statistics
are formed in both isopycnal following and fixed-depth reference frames. A related invesdgation simply
counts the number of isopycnals found in fixed depth intervals of varying scale. At vertical scales greater
than 2-3 m, the statistics of the isopycnal counting study are Poisson. The corresponding isopycnal
separation statistics are described by gamma pdfs. The relationship between these three types of informa-
tion is very nearly as predicted by classical Poisson theory. (e.g., Papoulis 1984).

In this study, the instantaneous separation between isopycnals is simply the sum of the separations of the
intervening isopycnals. For example:

Z220 - Z200 = (Z2 10 - Z200) + (Z220 - Z210)

=(z 201 -z200)+ (z202 -z 20 1) +...+ (z219 -z21s)+ (z220-z 21 9) etc.

Here z220 indicates the instantaneous depth of the isopycnal whose mean depth is 220 m. It is easily
shown that the semi Lagrangian gamma pdf associated with 20 m (say) mean separation can be given as
the convolution of the gamma pdf of 10 m separation with itself, or tire convolution of the pdf of 5 m
separation, repeated 4 times, etc. This key mathematical property of the gamma pdf is only applicable to
the present problem if the various "sub-separations" which are added together to form the larger separa-
tion are themselves statistically independent. Statistical independence implies that the separation (strain)
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Fig. 9. Histograms of temperature gradient obtained at a variety of fixed separations Ai by Gregg in the
Central Pacific in 1977 from Desaubies and Gregg (1981). The solid curves give the predictions of the
Poisson model using the single constant X = 1.1 m from the East Pacific 1986 PATCHEX data set.

statistics are uncorrelated. At sufficient small scale where the strain field is correlated we expect the Pois-
son model to deviate from observation.

A single constant X (-1.1 m- 1 here) should describe the mean, variance, skewness, etc. at all vertical
scales where the model is applicable. The associated vertical wavenumber spectrum of strain should b,!
white, with spectral level X-1. In fact, modest variation in X is seen in the observations. A realistic
description of (the second moment of) the strain field requires specification of high and low wavenumber
bounds on the spectrum. These bounds are necessary to insure finite variance of the strain field and to
acknowledge the finite depth of the ocean. Additional physical principles, beyond the scope of the Pois-
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son model, need to be invoked to determine these bounds. An investigation of the non-Poisson aspects of
the present data, with a focus on the small-scale/high wavenumber region of the spectrum, will be
presented in a subsequent work.

In spite of the weak but apparent discrepancy between the observations and the Poisson model at small
vertical scale, the Poisson-gamma pdfs represent a powerful starting point for a description of the fine
scale fields in the sea.
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SPATIAL STRUCTURE OF THERMOCLINE AND ABYSSAL INTERNAL WAVES
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ABSTRACT

One hundred velocity profiles over nearly the entire water column are analyzed in terms of
the vertical and horizontal structure of the steady and internal-wave velocity contributions. The
temporal decomposition into steady, inertial, and high-frequency internal-wave contributions is
obtained from several brief time series at one location. The spatial structure of the velocity field
is obtained from simultaneous profiles at separations ranging from 15 in to 15 km. WKB normal-
ization of wave amplitude and stretching of vertical wavenumber are performed on the inertial
and internal wave components. A reference Brunt-ViiisiMi frequency (No) of 3 cph is used.
Spectra are computed on the WKB scaled profiles over more than 90% of the water column and
separately over the upper and lower halves. The total internal wave field exhibits equipartition
between the east and north velocity components, a decrease in energy density at the lowest
wavenumber, and an overall dependence of KE on vertical wavenumber (m) as m-2.5. Most of
the internal wave energy is contributed by inertial motions, and of this most occurs at (scaled)
wavelengths of 100-500 m with a peak at mode 3 (500-n wavelength). The inertial period con-
tributions reveal a power law of m -3, while the high-frequency internal waves ((o >2f ) follow a
slope of m -2. There is strong vertical polarization (CW > ACW) of the near-inertial contribution
but little or none for the higher-frequency motions. The scaled water column is divided in half
for upper-half/lower-half comparisons. There is more scaled inertial KE in the lower half of the
water column. The high-frequency internal waves have comparable total energy, but the upper-
half spectrum shows a deficiency (or the lower half shows an excess) at vertical wavelengths
shorter than 100 stretched meters. The upper half is where the time-mean shear is largest and
critical layer processes might be playing a significant role. On the other hand, the lower half may
exhibit the influences of bottom scattering of internal waves which tend to "whiten" the spec-
trum. A few simultaneous, but spatially separated, velocity profiles are differenced, and the KE
of the resulting profiles have a zero-correlation scale of about 15-20 km for the total internal
wave field. The difference profiles consist primarily of inertial waves. Thus, the deep water iner-
tial waves exhibit wavelengths of 60-80 km (four times the zero-correlation distance) or less in
contrast to much longer scales reported for the SML and uppermost thermocline.

1. INTRODUCTION

The least measured aspect of oceanic internal waves is the spatial structure. This is espe-
cially true in the abyssal oceans. The paucity of velocity observations there reflects more the
difficulty in making appropriate measurements than a lack of interest in or recognition of the
importance of the spatial structure. Regardless of the cause, ignorance of the horizontal variabil-
ity of the velocity field is profound. This is an unfortunate circumstance, because there are
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numerous reasons to study the spatial structure of internal wave velocities. The spatial charac-
teristics must be observed to improve our understanding of

* wave dispersion
* effects of advection and Doppler contamination
• WKB scaling and power laws
* wave propagation (momentum, heat, and kinetic energy fluxes)
• wave nonlinearities, such as wave-wave interactions
* wave mixing and instabilities
* interactions of waves and mean currents
* spatial inhomogeneities and patchiness.

Most of the previous spatial studies have been in the upper ocean, and of these most are of
temperature. For example, Hayes (1975), Katz (1975), and Stegen et al. (1975) present observa-
tions of vertical profile series, horizontal tows, and profile sections, respectively. The pioneering
observations in IWEX (MUller et al., 1978) and GATE (Kgse and Olbers, 1979) provided impor-
tant thermocline measurements over a spatial array of moored instruments. Considerable mea-
surements of upper ocean velocity and temperature have been obtained with XCPs (Kunze and
Sanford, 1984; D'Asaro, 1984; Kunze and Sanford, 1986). The spatial distribution of inertial
waves forced by moving hurricanes is discussed by Sanford et al. (1987). Acoustic Doppler
profiling with enhanced depth capabilities has been conducted by Pinkel with great success in the
tropical Pacific thermocline. Basically, these various observations do not reach deeper than about
100 m, the base of the permanent thermocline.

The goals of this work are to describe the dominant vertical and horizontal scales of internal
wave variability as revealed in profiles of horzontal velocity. An attempt is made to separate the
contribution of inertial- from higher-frequency (i.e., (o > 2f ) internal waves and contrast thermo-
cline and abyssal motions. Special attention is given to the observation and analysis of subther-
mocline internal waves.

2. THE OBSERVATIONS

The observations were collected in the Sargasso Sea of the western North Atlantic Ocean, in
a region with a relatively flat bottom, at least 400 kin from appreciable topographic features
(except for drops 306-310, which are not included in the spectra). The observations were taken
in 1973 and 1975 during the MODE-I (MODE Group, 1978) and FAME (Sanford and Hogg,
1977) programs. The profile locations are presented in Fig. 1, with additional information con-
tained in Table 1. All the data were taken in the summer and fall in generally light winds and low
sea states.

A free-fall velocity profiler operating on the principles of geomagnetic induction (Sanford
et al., 1978) was used to profile the entire water column. The device is called an EMVP, for
Electro-Magnetic Velocity Profiler. In the water depth involved for these data (5200-5500 in),
the EMVP required about 1.5 hours for a down or up traverse of the water column. When operat-
ing in a time-series mode, occupying one site repeatedly, the EMVP was deployed about once
every 6 hours. A set of seven time series of profiles was analyzed. One series was obtained in
shallower water (4500 m) than the other six. The remaining group of six time-series profiles,
consisting of 50 drops, or 100 profiles (down and up traverses are used separately), are WKB
scaled and spectrally analyzed. A second measurement configuration, intended to reveal horizon-
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Fig. 1. Locations of profiles used in this study. All data were taken in the western North Atlan-
tic in the Sargasso Sea. The smaller-scale figure shows locations of simultaneous,
separated profiles around the MODE-I central mooring.

tal gradients, was deployed in which two EMVPs were preset to fall simultaneously at a known
horizontal separation. Over a dozen such horizontally spaced pairs were obtained, but only four
were made at horizontal separations of 1 km or greater.

The data quality is good, with errors not exceeding I cm/s rms. This level is consistent with
the analysis of Sanford et al. (1978) and the measured mis differences between closely spaced
profiles. The vertical resolution on the original profiles is about 8 dbars, which becomes 10 dbars
after interpolation to a uniformly spaced scries.

Because of intermittent failures of the internal digital recorder and the application of data
quality criteria, gaps exist in some of the profile series. The recorder-produced gaps seldom
exceed 10% on the better recorder, but sometimes 50% of the data is missing on the recorder
aboard the second EMVP. A quality screening is applied to the data, such that if the noise in the
EM data exceeds the equivalent of about 1 cm/s rms, no velocity determination is made. This
condition occurred frequently above 100 m depth because of bubble formation in the electrode
arms. When the gaps are short and not too frequent, they are filled by interpolation. When the
gaps are more extensive, the data are not used or, if part of a spatially separated pair, only mea-
sured points are used.

The horizontal spacing between two simultaneously dropped profilers was determined
acoustically using synchronized acoustic transmissions from the two profiers. Travel times for
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Table 1. Profiles used in analysis.

Group Type Location

202-206 Time Series 270 58' N 690 38' W
213-214 Spaced Drops 270 23'N 700 01'W
215-216 Spaced Drops 270 29' N 700 00' W
217-218 Spaced Drops 270 39' N 690 31' W

219-228 Time Series 280 00' N 690 39' W
221-222 Spaced Drops 28 00" N 690 39'W
230-245 Time Series 280 00' N 690 39' W
235-236 Spaced Drops 280 00' N 690 39' W
238-239 Spaced Drops 280 00' N 690 39' W
241-242 Spaced Drops 280 00' N 690 39' W
244-245 Spaced Drops 280 00 N 690 39'W

251-260 Time Series 350 00' N 660 30' W
262-274 Time Series 350 00' N 660 30' W
306-310 Time Series 320 58'N 640 23'W

320-324 Time Series 350 00' N 660 30' W

direct and bottom-reflected acoustic paths were used to determine probe separations. Also, at
short separations the distance could be measured visually; at the longest separations (> 4 kin) the
position of the surface release for the distant EMVP was calculated by interpolation between
deployment and recovery positions as determined from LORAN. The displacement of the probe
during a profile is negligible compared with that due to the surface current action before and after
a profile. For separations of 100 m or less, it was possible to confirm visually that the profilers
returned to the surface with approximately the same horizontal separation as at launch.

3. DATA ANALYSIS

Most of the kinetic eneziy of these velocity profiles resides in the low-frequency, quasi-
geostrophic motions, with internal waves contributing only about 20% of the total horizontal
kinetic energy. Two methods are used to separate the internal waves from the background. In the
first method, a 1-day or longer series of profiles at a location is fitted to time-mean and inertial-
period components by a rotary, least-square decomposition method described by Sanford (1975).
The time-mean profile is subtracted from the individual profiles; the residue profiles are princi-
pally composed of internal waves. When both the time-mean and inertial profiles are subtracted
from the original profiles, the residue profiles are of higher-frequency internal waves.

The second scheme involves the subtraction of two simultaneous but horizontally separated
profiles. The residue profile is taken to be composed of internal waves, since the difference in
low-frequency structure over 10 km is assumed to be negligible. This assumption is based on the
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measured correlation length of about 100 km for the MODE eddy (MODE Group, 1978). Both
methods of internal wave discrimination are barely adequate, yet both permit useful analysis of
internal waves in the presence of strong planetary motion.

The third method for removing the time-mean or planetary motion is to fit individual
profiles to vertical eigenmodes for linear, flat-bottom, and zero-mean-flow Rossby waves. It was
thought that the modal fit would filter out the internal waves. The eigenmodes are solutions to
the equation (Pedlosky, 1979)

wI +XW =0, (1)

where (W) is the eigenfunction, the subscript denotes differentiation with respect to depth z, and
N and f are the Brunt-Viis'Iii and Coriolis frequencies. The separation constant (X) is
-[(-3k /w) + k2 + 12, where 0 is the horizontal (meridional) gradient off, o) is the wave fre-
quency, and k and I are the east and north horizontal wavenumbers. The boundary conditions at
the sea surface and bottom are

W = 0 at z = 0 and -H. (2)

The hypothesis is that an energetic mode will remain constant from fit to fit, being relatively
unaffected by the internal waves. However, it is found that the decompositions show that the
modal estimates, even for the most energetic first mode, fluctuate greatly over the brief series.
The cause of this behavior is large, low-mode inertial period components that contaminate the
eigenmode computation. Eigenmode fitting is very useful, however, when applied to the time-
mean profiles derived from the rotary, least-square decomposition.

The time series profiles are decomposed into time-mean, inertial, and high-frequency inter-
nal wave components. Since the subinertial motion is so energetic, it is better to remove most of
it from the series at the first step. The difference between the original profiks and the arithmetic
mean profile is called the internal wave field. The next stage is to subject the total internal wave
field to the rotary, least-square demodulation at a frequency equal to 1.05 f, a dominant fre-
quency often observed in moored current meter records (Webster, 1968). From this procedure are
obtained two velocity profiles: the low-frequency (which is small since the arithmetic mean has
been removed) and the inertial. The small, low-frequency component is added to the arithmetic
mean to yield the best estimate of the subinertial (time-mean) profile. The inertial profile consists
essentially of speed and direction values referenced to some arbitrary, prescribed time to. To
compute the inertial profile at a given time t, it is necessary to add to the computed direction an
amount given by 1.05f (t - to). Thus the higher-frequency internal wave field is obtained by
subtracting the time-mean and the appropriately time-advanced inertial profiles from each of the
original profiles.

The independence of the inertial and higher frequency profiles (i.e., lack of correlation) is demon-
strated in Appendix A.

Both down and up profiles have been used. No vertical interpolation has been performed; if
more than 2/3 of the data at a given 10 dbar level is missing, no fit is performed at that level.
That is, if 10 profiles were used (say 202-206, down and up), then 7 or more of the 10 velocity
values must be available at that depth level for an acceptable fit to be made.
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The fitting for steady and inertial components for the series 202-206 is shown in Fig. 2.
This series provides a clear example of the compact description often possible for subinertial
profiles. About 95% of the baroclinic energy is contained in the steady profile. The relative
smoothness of the steady profile demonstrates the dominance of the steady component and the
ability of a few vertical profiles to obtain an adequate determination of the mean flow. Sanford
(1975) showed how a pair of velocity profiles taken half an inertial period apart nicely reveals the
steady and inertial contributions.

VELOCITY PROFILES 202 U -206U 24 MAY 1973 25 MAY
ROTARY FIT AND SERIES MINUS FIT 0600Z 0737 1200 1454 1800 2034 0000 0310 0600 0915 1200
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Fig. 2. Estimates at each 10-dbar level of the steady, inertial, and residual profiles (result of
removing steady and i-iertial components from the original profiles). The inertial com-
ponent was computed at a period of 25.6 hours (1.05f) and is shown for the reference
time of 0000 24 May 1973. The drop time of the individual profiles in this series is
shown in the upper scale.
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The modal composition of the 202-206 steady profile is shown in Fig. 3. Only the first
mode is shown in actual magnitude; the higher modes are shown at a magnification of 5. The
first mode is the dominant component, with the third adding some near-surface flow.

The time-mean profiles are presented in Fig. 4, and the inertial-period profiles are shown in
Fig. 5 for the seven-profile series. The data sets are denoted as 202-206, 219-228, 230-245,
251-260, 262-274, 306-310, and 320-324, where the numbers are the first and last drop
numbers used in each series. Note that drops 306-310 are in shallower water, which is still very
deep but significantly less than at the other sites.

Two characteristics of these data should be mentioned. First, the time-mean profiles have
considerable shear in the upper 1000 m; 320-324 also has higher mode, deeper shears. In gen-
eral, the vertical shear is much less below 1000-1500 m than in the upper ocean. Second, the
inertial fits are not totally independent of each other, and the energy and vertical scales are clearly
larger in the FAME data set compared with MODE-I profiles. The two experiments were con-
ducted at different latitudes (28°N vs 350N), at different seasons (summer vs fall), and under dif-
ferent weather conditions. Profiles obtained in the POLYMODE experiment around 300N, just
north of the MODE-I site, exhibit low levels of inertial motions. The latitudinal dependence of
inertial motions has been investigated by Fu (1981), who found that the inertial peak grows and
sharpens with higher latitude. With a small sample, it is not possible to determine if there are
seasonal, weather, or latitudinal effects, as opposed to the expected variability due to sampling.

The modal fits for six time series (i.e., Fig. 4 without 262-274) are shown in Fig. 6. The
first mode, which is plotted at one-fifth amplitude, is clearly dominant. Only the right-most
profiles exhibit more robust second or third modes. The la.-.c -,cond mode in 306-3 10 is prob-
ably the result of a large, thermocline eddy at this site, seen more clearly in Fig. 4.

A WKB scaling has been applied to both the temporal and the spatial series. After the
subinertial profile is removed, the resulting internal-wave profiles are scaled in amplitude and the
independent variable-pressure or depth. Removal of the subinertial flow is achieved by either
the otary decomposition of a time series or the subtraction of spatially separated drops. The
WKB procedure (Leaman and Sanford, 1975) uses the local Brunt-Viisiiwi frequency, N(z), to
normalize wave amplitude by dividing by [N(z)1No]l 2 and to stretch (shrink) the vertical scale in
proportion to N(z)/N0 . A value of 3 cph is taken for N throughout this paper, although different
N profiles were used for each data set since the observations were taken at different locations and
seasons. An example of the Brunt-Vdishld profile and the actual stretched coordinate transforma-
tion diagram for the MODE data are shown in Figs. 7a and 7b. The WKB stretching and normal-
ization are discussed further in Appendix B.

The inertial, high-frequency, and raw profiles minus the time-mean profiles (i.e., the total
internal wave band) are WKB stretched and normalized, denoted by s and n, according to the pro-
cedure of Leaman and Sanford (1975). The resulting profiles are about 1800 sdbars long (Fig. 7)
with velocity values every 10 sdbars [pressure in decibars (dbars) and depth in meters (m) or
stretched meters (sm) are used interchangeably in this paper]. Short gaps in the original data are
closed by linear interpolation. For spectral computations, 160 data points are used, which
excludes about 200 m at the top and bottom of the water column.
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Fig. 4. Steady velocity profiles for seven time series. The numbers under each profile
correspond to the first and last drop used in each series.

4. THE VERTICAL STRUCTURE OF INTERNAL WAVES

The internal wave profiles were subjected to Fourier analysis. Although velocity values
from nearly the whole water column are used, the vertical wavelengths do not correspond to
modes. First, neglect of the upper 200 m biases the computations; second, only the even modes
correspond to spectral estimates (the odd modes are not individually resolved). This situation
occurs because the modal eigenfunctions are similar to cos n icZ /H whereas the Fourier represen-
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Fig. 5. Inertial profiles for the same seven time series used for Fig. 4.

tation uses sin 2n IZ1H and cos 2n rZ1H. No band averaging is done on the spectra; ensemble
averaging is performed over the six inertial determinations and 100 higher-frequency internal
wave profiles. It is clear from the visual similarity of adjacent inertial fits that these data are not
independent realizations. Because there are three separate groups of profiles, it is assumed that
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Fig. 7. Brunt-Visiilii frequency profile Oine a) at the MODE-I mooring site and relationship of
stretched pressure to measured pressure (line b).

these are independent and that the true confidence intervals are at least not larger than those based
on two to three realizations. For the high-frequency profiles, down and up profiles are not
independent in the deep water, but adjacent profiles taken every 4-7 hours are independent,
except insofar as these waves are influenced by common environmental factors such as mean
vertical shear or weather. For purposes of statistical inference, it is assumed that the set consists
of 50 independent profiles, allowing for some common feature- -- down and subsequent up
profiles in deep water.

There are no significant differences between the energy in the east and north components.
The separate contributions to thL kinetic energy spectrum are shown in Fig. 8 for the original data
minus the time-mean profiles. Equipartition between the velocity components is expected (Gar-
rett and Munk, 1972) and observed (IWEX; MUller et al., 1978). These results do not rule out
nonequipartition over short portions of the water column or near sources and topography (John-
son and Sanford, 1980; Gordon, 1978).
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Only at the lowest wavenumbers is the spectrum consistent with the top-bat dependence of
the first GM model (Garrett and Munk, 1972). The spectral slope tends to be flat over estimates
1, 2, and 3 (1600, 800, and 533 sm) followed by a slope of-2 until at a wavelength of about
50 sm and smaller, the high wavenumber slope is about -2.5. The corresponding shear spect.um
has a slope between zero and --0.5. The slope is probably not significantly nonwhite and basi-
cally agrees with the proposed shear spectrum of Gargett et al. (1981).

There is a clear difference in the spectral slope between the inertial and higher-frequency
waves (Fig. 9). At vertical wavelengths of about 100 m and longer, the inertial motions are
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Fig. 8. Energy density spectra in stretched Fig. 9. Kinetic energy density spectra for
and normalized form for all 100 total internal wave field, the inertial
internal wave profiles for east and wave contribution, and the high-
north velocity components. The frequency internal waves. The
spectrum of kinetic energy would ordinate is kinetic energy and is
be one-half the sum of the east and one-half the sum of the east and
north contributions. north velocity components.
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dominant, except for the longest vertical scale, at which they are (or may be) inferior. At all
wavelengths shorter than about 100 m, the higher-frequency waves are more energetic. Over the
high-wavenumber region (say 5 c/skm and larger), the spectra slopes are about -3 for the inertial
and -2 for the HF waves. In both cases the slope depends on the interval over which the fit is
made. For example, around 20 c/skm (50 m), there is a slight bump (energy excess) to both spec-
tra which, if heavily weighted in the fit, would force higher slopes to be obtained. Excluding this
bump, at the highest wavenumbers (> 20 c/skm) the spectral slopes approach -2.5 for the inertial
component and -2.0 for the high-frequency waves.

Other spectral slope determinations have largely resulted from temperature observations.
Hayes (1975) reports a slope of -2.5 based on temperature profiles from a CrD; Cairns and Wil-
liams (1976) derive a slope of-2 from a drifting, vertically moving temperature sensor, as does
Gregg (1977) from his free-fall temperature profiler. The temperature field is relatively unener-
getic nearf because the motions have little vertical velocity but maximum horizontal kinetic
energy. Thus temperature spectra are lacking the lower frequency (and lower wavenumber),
en..rgetic inertial signatures. Also, it may be that vertical detrending of temperature profiles (to
reduce the contribution from the time-mean temperature field) removes much of the longer verti-
cal wavelength components.

The conventional and rotary spectra (Leaman and Sanford, 1975) of these data are presented
in Fig. 10 in the energy-preserving form. The low wavenumber energy cutoff is clearly revealed
in panel A beyond a wavelength of about 500 sin. The peak at 2 c/skm is very pronounced,
showing that 500 m is a dominant vertical wavelength. There is a secondary peak around
5-6 c/skm, near the third harmonic of the main peak. The inertial energy is principally contained
between wavelengths of 150 and 500 sm. At both the lowest and highest wavenumbers, the
high-frequency internal waves are more energetic than the inertial motions.

A similar result was reported by MUller et al. (1978) who found during the IWEX experi-
ment that there was little energy in the first three inertial modes (estimates I and 2 here), and that
most of the energy at these vertical wavelengths was contributed by higher-frequency internal
waves. Perkins (1970) found that the third vertical mode was the dominant one in the Mediter-
ranean. The global wave functions of Munk and Phillips (1968) and Fu (1981) have turning lati-
tudes which decrease with vertical mode number. Near-inertial waves will be reflected
(attenuated) in a manner inversely related to vertical mode number as they propagate northward.
Thus, the observed near-inertial wave field would be deficient of the lowest modes unless these
modes were locally forced.

Panels B and C of Fig. 10 show the rotary decompositions of the inertial and high-
frequency components. As has been reported by many investigators (e.g., Leaman, 1976; Kundu,
1976), the clockwise rotating (with respect to depth, looking downward) contributions are more
energetic. The ascendency of the CW over the ACW is clear in these data, but was not observed
in IWEX data (MUller et al., 197'0) from a mooring in the MODE-I area based on calculations of
the vertical component of velocity from temperature measurements. It is likely that the IWEX
observations contain excessive noise from temperature finestiucture.

These are the first abyssal vertical spectra of frequency-separated contributions; previous
profile results were based on the whole frequency spectrum (Leaman, 1976), used inertial decom-
position over only a short vertical interval and applied no WKB adjustments (Rossby and
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Sanford, 1976), or were of thermocline motions (Pinkel, 1981, 1985).

The peak near 2 c/skm in the inertial period energy stands out in the CW component and is
missing in the ACW. The CW contribution exceeds the ACW at all vertical wavelengths down to
about 100 m. The ACW part is more regular in its wavenumber behavior, while the CW may
have some harmonic structure as previously mentioned. It is evident that the ACW inertial com-
ponent is similar in energy and spectral form to that of the higher-frequency internal waves.

Clearly, CW polarized waves dominate over ACW ones, and this demonstrates that most of
the energy is associated with a downward group velocity (CW). The direction of energy flux, on
the other hand, is not easily determined from these data. There is insufficient frequency (or,
equivalently, spatial) information to calculate the group velocities associated with the upward-
and downward-going waves. Near the inertial frequency, the vertical group velocity is

Cg =- (€ -f 2) (3)
fm

The convention is that m > 0 corresponds to CW polarized waves and m < 0 to ACW waves.
The inertial decomposition is not selective enough in frequency to allow o to be determined
separately for the CW and ACW contributions. In fact, it would take a 100-day-long time series
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Fig. 10. A: Spectra of Fig. 9 expressed in energy preserving form. B: Inertial component
separated into CW and ACW depth-polarized components. C. High-frequency internal
waves expressed as CW and ACW spectra.
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to get the resolution to about 1% off. Spatial information, however, is readily used to resolve
small differences in Cg, which can be written for 02<< N2 as

N N2k 2

Cg 3 (4)
fm 3

where N is the Brunt-Vishlii frequency and k is the modulus of the horizontal wavenumber asso-
ciated with the energy at the vertical wavenumber m.

In panel C of Fig. 10, the CW and ACW spectra are shown for the high-frequency internal
waves. The energies are about equal, demonstrating the vertical symmetry of these waves.
Models generally hypothesize vertical symmetry (e.g., Garrett and Munk, 1975), and wave
interactions predict equipartition (McComas and Bretherton, 1977).

A check of the WKB scaling results from comparing the upper half of the stretched water
column (- 200-1000 dbars of real ocean) with the lower half (1000-5000 dbars). Such a com-
parison is shown in Fig. 11. Although the energy levels are not greatly different, demonstrating
the usefulness of energy scaling, the vertical wavenumber spectra are systematically and increas-
ingly different at the high-wavenumber end. Several explanations for this discrepancy occur.
One is that the WKB scaling amplifies noise in the lower half relative to the upper half. To a first
approximation, the measurement noise is essentially the same throughout the water column, so
one might expect that the WKB scaling should boost the lower-half noise relative to that in the
upper ocean. In Appendix B it is shown that this effect is compensated for by the adaptive filter-
ing, the use of more data in the deep water. Thus the discrepancy probably results from more
complex, non-WKB effects or structural changes in the ocean.

The upper-half versus lower-half spectra are presented in Figs. 12 and 13 for the inertial and
high-frequency waves. The behavior of the two classes of motion is different; the deeper inertial
motions seem more energetic by a factor of about 2 at all vertical wavenumbers, whereas the
upper HF waves are more energetic until beyond 10 c/skm, where the spectrum drops rapidly. A
high wavenumber cutoff in this range has been reported by Pinkel (1984, 1985) in his upper
ocean profiles. The cutoff is not seen in the lower half of the ocean. Another possibility is that
the lower half exhibits the results of energy flux from low wavenumbers to high wavenumbers as
might be expected from the "whitening" effect of bottom scattering (Eriksen, 1985; Rubenstein,
1988).

The nearly constant ratio between upper- and lower-half inertial-energy densities suggests a
wavenumber-independent factor. It is necessary to work with more complete WKB expressions
(Phillips, 1977) for horizontal kinetic energy E and vertical wavenumbers m:

E c (1 +f 2/o2) (N 2 -f 2)

(02 _ f2 )3 2 (N2 -6)t 2

and

(N2 - 2) u2 k
o 0 -_f 2)1/2(6)

For .o -f it is clear that E normalized by N and divided by the vertical wavenumber resolution
(to yield spectral energy density) is



Spatial Structure of Thermocline, Abyssal Internal Waves

to ,O,
TOTAL I.W. INERTIAL

100 PROFILES 6 PROFILES
No :cph No :3cph\ \

110

0- I ' 10-2 -l
'4J --- LOWER HALF -- *--LOWER HALF

1t44

5 10 50 5 t0 50
VERTICAL WAVE NLMBER (c/skm) VERTICAL WAVE NUMBER (c/skm)
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E* E /N 1n* - N normalized energy density (7)

with

m* =mIN (8)
202_f 2(1)

Possibly the discrepancy in Fig. 12 results from incorrect N profiles or real departures from
WKB scaling. As discussed in Appendix B, the normalized and stretched energy density is
independent of N such that it does not change in value if an incorrect N profile is used. The
wavenumber scale does change in this case, resulting in a lateral shift of the spectrum. It is not
possible for N to be wrong by a factor of 1.5-2, but it does seem likely that the kinematic
changes predicted by the WKB expressions are not in equilibrium. That is, the downward-
propagating inertial waves, the existence of which is demonstrated by the rotary spectra, must
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continually undergo structural changes as they go deeper into the lower N region. Thus, there
might be a tendency for the wave structure to reflect that of a wave in equilibrium with a slightly
higher-than-local value of N. Hence, in the deep water, it is reasonable to expect energy that
should be at a certain WKB-assigned wavenumber to appear at a higher one, since N is essen-
tially monotonically decreasing below the thermocline.

Another possibility is that, if 02 -f 2 were smaller in the lower half compared with ayve,
the observed spectral shift in Fig. 12 would occur. That is, as a wave propagates into the deep
water, (02 _f 2 decreases (by processes to be discussed later), and the WKB-scaled energy (using
only N) increases and appears at a larger stretched wavenumber. A spectral value will move
along the line of slope +2 in the log E*I1n* vs log m* plane as e) changes nearf. This will
occur at all wavenumbers, resulting in a constant offset on the log/log plots of Fig. 12.

A possible mechanism for an (o -- f shift in the deep water is the kinematic effects of mean
vertical (and, in general, horizontal) shears. In each of the data sets, there was a significant time-
mean vertical shear of about 20-40 cm/s over the upper 1000 m. The deep-water shears were
much weaker, although if scaled according to Rossby-wave modes (a similar scaling to that used
here for internal waves) the shears are comparable to those higher in the water column. To inves-
tigate the behavior of near-inertial waves in the presence of vertical shear, it is appropriate to
replace (0 by the intrinsic frequency, (o - k . U(z), where k is the horizontal wavenumber and U is
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the time-mean (of frequency << Co) horizontal velocity. As near-inertial waves propagate down-
ward from the sea surface, some will experience a frequency shift such that co - k U approaches
f, and the energy density as represented in Eq. (7) greatly increases. Other waves experience the
opposite effect and blend into the higher-frequency components. The vertical wavenumber is
correspondingly increased, which means that the deep water spectrum is translated along a line of
slope = 2, resulting in high energies at every wavenumber. Once below the main shear zone, the
refraction ceases, but the waves retain the enhanced energy.

Continuing with this line of speculation, the high-frequency waves also experience shear
refraction. The situation here is that, as N2 - o)2 becomes small, modifications occur such that
horizontal KE density/N becomes larger, while m/N becomes smaller. Explicitly, as o -4 N in a
region of uniform N, the expressions are

E* 2 c2)-1
(N (9)

and

N2 o 2 N 4 k-2 m* 2. (10)

Hence,
E-.-* ,N-4 k m* -2. C 1)

8m*

Thus a point on the spectrum will move along a line of slope equal to -2. For small changes, the
spectral distortions would be hard to see, since the data have a slope of about -2.

A second consequence of shear refraction is the possibility of critical layer processes. Inter-
nal waves of a given frequency have smaller horizontal phase velocities as the vertical
wavenumber is increased. Away from N and f, the horizontal phase velocity can be approxi-
mated as

c =No/m* . (12)

Critical layer absorption can occur as the waves propagate through an ambient velocity shear.
Let 8U be the velocity difference between the level of wave generation and the point at which
8U = c where critical layer processes occur. For a given 8U over the domain of interest, waves
of vertical wavenumber greater than m* (where m = No/8U) will experience refraction and crit-
ical layer processes. The energy discrepancies seen in Fig. 13 may result from shear refraction
and critical layer absorption. A two-part internal wave field is hypothesized by Munk (1981). At
low vertical wavenumbers (m* < m*), the energetic, intrinsic waves occur, while at smaller
scales (m* > m* ), there are compliant waves which are greatly modified by interactions with the
intrinsic field.

The change in slope in Fig. 13 occurs at a wavelength of 50 sm. The corresponding velo-
city difference, 8U, is 5 cm/s, a value not frequently observed over 50 sm in the time-mean flow
but one common to the inertial motions. The shear over 50 sm is taken to be caused by an inertial
wave with a vertical wavelength of 200-300 sm.
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5. THE HORIZONTAL STRUCTURE OF INTERNAL WAVES

Certainly the most unexplored aspect of internal waves is their horizontal structure. To a
limited extent, IWEX (Briscoe, 1975; MUller et al., 1978) described the horizontal wavenumber
dependence of internal waves. Much more extensive observations have been reported by Katz
(1975) using towed sensors, Stegen et al. (1975) from XBT patterns, and Pinkel (1975) using a
spaced array of temperature profilers and, later, horizontally directed Doppler sonar. There are a
few, but widely divergent, estimates of the horizontal wavelengths of near-inertial waves based
on moored current meters (Webster, 1968; Fu, 1981; Pollard, 1980). More recent observations
with XCPs by D'Asaro (1984) have revealed spatial coherence scales of internal waves in the
upper ocean. The data set presented here is a small but unique one demonstrating a clear pattern
to the horizontal dependence of internal waves.

The original intention was to compare these observations with the expectations of Garrett
and Munk (1975) expressed in their dropped horizontal coherence (DHC). The pursuit of DHC
calculations was suspended because the data set was too small to yield reliable estimates. More-
over, interpolation was necessary across the data gaps before WKB vertical stretching was
applied. Thus it was decided that the vertical wavenumber and horizontal dependence of DHC
could not be adequately tested with the present data.

Rather than the DHC calculations, the mean square differences between the horizontally
spaced profiles are computed. This quantity is identical to a structure function of zero depth lag.
The KE estimates are based only over depth intervals in which both profiles are good; there are
gaps in the difference profiles wherever either profile was missing data. Measurements from the
surface to 5550 dbars, every 10 dbars, are used for 556 possible velocity differences. The velo-
city differences are normalized by [No/N (z)] 2, the WKB amplitude scaling.

A set of profile differences, before WKB scaling, is shown in Fig. 14. There is a clear pro-
gression toward larger AX. Also, the dominant vertical scale increases with AX, consistent with
the dispersion relationship between vertical and horizontal wavelengths for inertial-period inter-
nal waves.

An attempt has been made to demonstrate the dominance of the inertial energy at the AX =
12.5 km separation. The inertial fit was computed for the MODE-I center time-series drops 236
through 245. This fit was then rotated in time to the time of the 241/242 drop pair. The rotated
fit and the difference profiles are presented in Fig. 15. There is substantial agreement throughout
the water column, although the correspondence is clearly better below the thermocline (1000 m).
The correspondence may be improved by rotating the inertial fit slightly, but the present example
serves to demonstrate the presence of inertial waves in the velocity differences. Incidentally, the
superior agreement below 1000 m may add credibility to the argument in the previous section
about ct9 -f 2 being smaller (and, possibly, more narrow band) in the deep water than in the
upper ocean.

Table 2 presents the normalized variances of the difference profiles. At the smaller horizon-
tal separation, the normalized kinetic energy is 2.5 ncm 2/s2. Since the depth-averaged N is 1 cph,
the average kinetic energy of the difference profile is about 0.8 cm2/s2. There is a steady trend
toward higher kinetic energies at larger horizontal separations, culminating in about an order-of-
magnitude-larger value at 12.5 km. The mean square differences between the two EM sensors
(for redundancy, there is a pair of EM sensors on each profiler) are on average less than
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Fig. 14. Profiles of the differences in velocity components for pairs of simultaneous drops. The
numbers beneath each profile represent the drop numbers of the pair, and the letters
denote use of either the down (D) or up (U) portion of the profiles.
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Fig. 15. Difference profile for drops 241 and 242 (down and up portions averaged) plotted at
half amplitude (a value chosen to increase visual comparison) versus the inertial fit of
the time series at the central mooring (including drop 242) rotated 1360 forward in time
from the reference time used for display of fit in Fig. 5.

0.5 ncm2/s2, which suggests that much of the interprofiler variance is due to apparent velocity
differences induced by depth (pressure) errors acting on a shear field. That is, it is thought that
most of the variance in profile differences at small AX originates from systematic pressure errors
between the profilers. A pressure offset shifts one profile vertically with respect to the other,
resulting in apparent velocity differences when small vertical-scale shear is present.

The background internal-wave energy has been computed over the MODE center profiles
minus a time-mean profile. The time-mean profile was constructed from all MODE center
profiles from drop 235 through drop 245, the profiles constituting the largest horizontal separa-
tions and largest energy differences. The residue profiles are considered to be of internal waves
and have an average nomalized energy of 15.4 ncm 2/s2. Thus the difference profiles at
AX = 6.7 km contain a kinetic energy level about equal to that in the internal-wave background
field.
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Table 2. A summary of WKBJ normalized horizontal kinetic
energy of difference profiles. The average N over the water
column is 1 cph, and the value of N, is 3 cph.

Separation % good AKE
Profiles (km) of 556 pts (ncm/s)

217-218D 0.015 96 1.8
2.1

217-218U 0.015 89 2.3

213-214D 0.05 89 2.4
2.4

213-214U 0.05 87 2.3

215-216D 0.1 42 2.7
2.5

215-216U 0.1 83 2.3

221-222D 0.4 37 2.6
2.9

221-222U 0.4 55 3.1

244-245D 1.5 60 4.7
5.1

244-245U 1.5 82 5.5

235-236D 4.8 76 11.1
11.1

235-236U 4.8 94 11.0

238-239D 6.7 47 14.6
14.3

238-239U 6.7 64 14.0

341-242D 12.5 86 23.2
23.6

241-242U 12.5 93 23.9

The results shown in Table 2 are plotted in Fig. 16. The solid line is a fit to the data with an
intercept of 2.5 ncm2/s2, which is taken to be the noise level common to measurements at all
separations. The dashed line has the same slope as the solid line but with the additive noise
removed.
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Fig. 16. Kinetic energy of the difference profiles for simultaneous pairs of Fig. 15 in normalized
energy units. Both down and up portions of profile pairs are shown. If the energy of
difference pairs at a small separation is uncorrelated noise, the fit can be reduced by
this noise (about 2.5 ncm/s), and the result is shown as a dashed line. One way to view
these data is to recognize that the profiles have zero correlation when the kinetic energy
of the difference profiles exceeds the average kinetic energy of the local internal wave
field (15 (nCM/s) 2).

The cross-structure function can be expressed in terms of correlation functions and the
intemal-wave energy in each profile going into the pair. Let u 1, v 1 represent profile I of a pair
and u 2, v 2 represent the other profile. Then

KE ofAv=j [(U 1-u 2 +(v -v 2)2 ] , (13)

where the overbar represents a vertical average over all (good) data, which for the following is
assumed to be the whole water column. The cross correlation function is

U1 U2

with a similar expression for R.,, Assuming the internal wave statistics are spatially uniform,
then u I = u 2, v 2 = V - v 2, and u and v are isotropic (R,,, = Rv, 2 -

1/2 1 AV1 2 = 2(-R) • -1/ 2 . (15)

190
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The KE of difference profiles should be zero at AX = 0, increasing to four times the average KE
of v as R goes toward -1 (only for single wave) and ultimately approaching two times the aver-
age KE of v as R goes to zero for large AX. From Fig. 16 it is evident that 1h IAv12 = v2 (i.e., R
= 0) for AX - 15-20 km. The separations are not large enough to reveal the asymptotic behavior
of the difference KE.

The MODE-I eddy does not contribute significantly to the velocity differences presented in
Fig. 16. The absence of low-mode eddy structure in the differences of Fig. 15 demonstrates the
absence of mesoscale eddy contamination. The MODE-I eddy had a zero correlation scale of
100 kn (MODE Group, 1978) and a correlation function of the form

R =cos A for AX < 100km. (16)200 km
The eddy field had a local KE of 25 (cm/s)2, or in normalized units was 75 ncm 2/s2 since
N. / N - 3. Thus the eddy interference is estimated to be about 1 ncm2/s2 at AX = 6.7 km and
3 ncm 2/s2 at 12.5 km. It may be that the mean square differences at AX > 15 km would be
strongly influenced by mesoscale contamination. On the other hand, the drops at large AX were
aligned parallel with the flow and, hence, normal to the first-order velocity gradient. Moreover,
little of the MODE-I eddy structure, primarily first mode, is seen in the velocity differences of
Fig. 14.

6. CONCLUSIONS

The present study describes the spatial structure of thermocline and abyssal internal waves.
Velocity profiles usually span only the upper ocean and are seldom deeper than the base of the
main thermocline. WKB normalization and stretching ae appli, !o the velocity components
and vertical coordinate, respectively. The WKB-scaied profiles exhibit much more vertical
homogeneity and can be used to reveal differences betweer upper-ocean and abyssal internal-
wave characteristics.

The principal conclusions of the analyses of these velocity profiles are

1. East and north contributions to total internal wave kinetic energy are equal as is con-
sistent with statistical isotropy in the horizontal.

2. Bulk of the internal wave energy is contributed by near-inertial motions.

3. Frequency-wavenumber dependence of internal wave spectra is nonseparable: near-
inertial motions exhibit a power law -c m - whereas higher frequency waves exhibit
a power law -, m -2.

4. Near-inertial wave motion is clockwise polarized with depth and is most energetic at
500-m wavelength with lesser energy contributed by the band 100-300 m.

5. High-frequency internal waves exhibit no departures from isotropy, either in the verti-
cal (i.e., polarization) or in the horizontal coordinates.

6. Upper-ocean internal waves exhibit a spectral cutoff in high-vertical wavenumber
energy compared with the lower half of the water column, suggesting action by dissi-
pative effects in the upper ocean and/or scattering effects ("whitening") in the abys-
sal ocean.
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7. A horizontal, spatial correlation scale of 15-20 km existed for the MODE-I internal
wave field.

Even the crude frequency separation possible with these short time series reveals the dis-
tinctly different spectral slopes for the inertial waves compared with the high-frequency internal
waves. Spectral stability is achieved with ensemble averaging, rather than band averaging. As a
result, the spectra retain the lowest wavenumber components, including essentially one
wavelength over the entire water column.

The near-inertial motions predominate at vertical wavelengths longer than 100-200 m, at
which point the high-frequency internal waves become more energetic. These differences may be
expressions of wave-wave processes. McComas and MUller (1981 a) find that, under conditions
of energy or action fluxes governed by the processes of induced diffusion and dissipation, a spec-
tral slope of -2 at all frequencies is not an equilibrium solution in the presence of flux and dissi-
pation. In contrast, power law slopes of -2.5 at inertial and -2.0 at high frequencies are near-
equilibrium solutions. The steeper slope for near-inertial motions supports the view that the wave
field may be in equilibrium.

These results demonstrate that a separable frequency and vertical wavenumber description
of tese data is not appropriate. Garrett and Munk (1972, 1975) suggested a spectral model in
which the same vertical wavenumber dependence was hypothesized at all frequencies. Clearly,
such a model is not supported by these observations. The maverick is the inertial motions; it
seems likely that the higher-frequency waves do follow a frequency-independent vertical struc-
ture. The inertial contribution, on the other hand, is more distinct owing to spotty generation and
its isolation or uniqueness among the internal wave continuum. It seems less interactive and
more independent than the rest of the internal waves (McComas and Bretherton, 1977; Olbers,
1923; McComas and MUller, 1981a,b).

At the longest vertical wavelengths, approximately one or two cycles per (normalized)
water depth, the CW and ACW energy components of the inertial motions decrease markedly,
becoming about equal at the lowest wavenumber. The tendency toward modes or symmetric
energy composition is to be expected because of surface and bottom reflections; the decrease in
energy for wavelengths greater than 500 sm is not easily understood. Pollard (1970) predicts that
mode 1 is most easily forced by surface stress because of its large vertical group velocity.
?ftrhaps the time-mean shear acts to destroy, or dismember, the lowest modes.

The separation of the total internal waves into upper and lower halves revealed mostly a
divergence of the spectra of the upper ocean relative to the lower part for wavelengths less than
100 m. The inertial component does not exhibit this behavior, the main characteristic of this
component is that the lower half is more energetic at all wavenumbers. The source of the diver-
gence of the spectra is the high-frequency internal waves. At vertical wavelengths shorter than
50 m, the slope of the upper-ocean spectra changes from -2 to -4. One possible cause is the
interaction of the internal waves with the time-mean thermocline shear. Bottom scattering should
move energy from longer vertical wavelengths to shorter. Hence, the upper half/lower half differ-
ences may result from the whtening effects of bottom scattering (Rubenstein, 1988).

The zero-correlation distance of 15-20 km is considerably smaller than previously reported.
Earlier measurements have largely been near the sea surface and have observed much longer hor-
izontal scales. For example, Pollard (1980) reported horizontal wavelengths of several hundred
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meters in the SML. D'Asaro (1984) observed inertial-wave coherence scales that seemed to
decrease with depth, consistent with the present, much deeper results. The increase in variance
between profiles obtained up to 12.5 km apart, essentially a structure function, is useful in
estimating errors in comparing measurements taken at separated sites, such as profiler and
moored current meter comparisons.

Velocity profiles over the entire water column are useful for studies of internal waves. The
observed energy levels are lower in the deep ocean than in the thermocline but not after WKB
scaling. Deep internal waves exhibit characteristics that should be more nearly in equilibrium
since they are more distant from surface sources and thermocline interactions. The spatial struc-
ture of internal waves is a sensitive measure of wave frequency through the dispersion relation.
Wave period determinations can be obtained from the spatial stiucture of the dominant internal
wave with better resolution than a long time-series of moored observations. It is likely that
models for internal wave characteristics would be better tested on subthermocline motions.
Abyssal velocity observations are needed to evaluate proposals that abyssal mixing rates and dif-
fusivity are larger than in the upper ocean. Methods are available for more extensive subthermo-
cline observations in support of modem internal wave studies.

APPENDIX A

In Section 3 it was asserted that the inertial fit produces a profile that is uncorrelated with
the residue or higher-frequency profiles. To examine this concept further, consider a simple,
two-component model for the internal wave field:

u +iv =A e*+B ew* (Al)

The inertial decomposition is the solution to

T- J(A ef +B eaw' -C ef )2 dt =minimum, (A2)

where the summation over the finite number of profiles has been replaced with an integration
over the duration T. The solution is

C(z)=A(z)+B(z)l , (A3)

where

I J e'(0--f)tdt'. (A4)
0

The high-frequency internal waves are the total internal wave field minus the inertial fit:
u + iv - C ef' = B (ei"' - I eift). (A5)

The energy spectra with respect to vertical wavenumber averaged over all profiles are as follows,
where the symbols ^ and * represent a Fourier transform with respect to depth and complex con-
jugate, respectively.

,1 ,.
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For the total wave field:

0 A A

A, 2 + B2 + AB*I* + A*BI.

For the inertial component:

T

AA AA A A

=A 2 +B22AB*I* +A*BJ.

For the higher-frequency component:
1T2f 4[ ei')l ei.)1 +12]d
if_ 2 I -I* e -I e()dt (A8)

B/ 2(1+!2 1 *1 - I/* )(A9)

- 2(1--J2)

The sum of the inertial and higher-frequency components is
A A AA A AA 2 + B2 + AB*I* + A*BI. (AlO)

Hence, the total energy equals the sum of the parts. In general, for a continuum of internal
waves, the spectrum of the total internal wave energy should equal the sum of the inertial and
high-frequency waves as here computed.

APPENDIX B

The WKB scaling and normalization (s & n) involves three steps:

1. Normalization based on a chosen reference Brunt-VishiN frequency:
U *1(z) = (No/N)112 U (Z). (BI1)

2. Adaptive filtering in which original observations are averaged over an interval deter-
mined by the local value of N/N0 :

U * (Z) = f JU*()d , (B2)

where

Az = the data spacing in the original profile (assumed to be uniform).

1 = z -No0 Az/2N(z)
2 = z +NoAzI2N(z).

1"1 6
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3. Stretching introduces a new depth scale, z , that is related to the measured depth
scale:

0

Schematically the procedure is shown in Fig. B 1.

The horizontal kinetic energy in the s & n series is

1. 0+~~ = ~ [U*(Z*)]2+ [V*(Z*)]2}dz* (134)

For now, ignore the effect of the adaptive filter and note that

dz= N(z dz , (B5)
No

Z z z
1 /2

U (z) ( o )/2 U(z) " - U*(z*)

N (Z
A-AZ

0 0

vertical coordinate.
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-1
°

T= If- N( ) d (B6)

and
0

" No N=--o"BY

So

f [U*(z*)]2dz* N0 0 U2 (z)dz (B8)H -n" HN.. 1 -B8

or

(B9)

when no adaptive filtering is used.

In the case in which the U* (z *) series is split in two, the upper haf N - 2 cph and the
lower half N - 0.7 cph. Thus the KE is No/i-3 times larger in the stretched and normalized
series than in the original. If the noise, UN, were independent of depth, then

Uupper = 1.5 UN

and

-0o,,r = 4.5 U.

Hence, an amplification of noise is expected in the lower half relative to the upper. This is what
is seen.

However, include now the adaptive filter which averages over measurements with a box-car
width proportional to N/N (z). The noise variance should decrease in proportion to N (z)/N0
(i.e., inversely to the number of data points taken into the average). The noise contribution is
now [N (z)/No] UN2, and the stretched and normalized energy is

UN"" =IV['" U - UN. (1310)

N 0

Therefore, no amplification of noise is expected.

According to Sanford et al. (1978) the difference between simultaneous velocity profiles by
two EMVP instruments is less than 0.7 cm/s ms. The noise variance is then -0.5 (cm/s) 2 If it is
considered as spectrally white and due to equal contributions from each instrument, then

E (m) = 0.5 (cm/s)2  1/2 = 5' 10-3 (cm/s) 2/cpkm.50 cpkm

This variance should be independent of depth and comparable to that seen on the upper half
versus the lower half spectra of Fig. 11. That is, the difference between the curves of Fig. 11
could be explained by larger noise in the deep water.

I IQ
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This analysis suggests that the differences between the upper and lower half may be real but
they are close to the noise level, although there is no expectation for more noise in the lower half
than in the upper.

With the WKB scaling and normalization, the horizontal kinetic energy density estimates
are independent of N. The KE density is I U 1(m*) 2/8m* where represents the Fourier
transform and 8m* is the wavenumber resolution, i.e., 2rlH*. Since U* = (No/N)112U and
8m* = N, &n IN, and under the WKB assumption variations in N are small compared with those
of U at any m, then Us* 2/8m* = U 12/m. Therefore, spectral deasity estimates are invariant to N
but are shifted by WKB scaling and normalization with respect to m. For example, suppose the
wrong value of N was used for some profiles. The values of energy density will not be incorrect,
but the wavenumbers will be. Hence, if there was a strong single wave in all velocity profiles, the
use of a wrong N profile would result in correct energy density estimates assigned to the wrong
vertical wavenumbr.
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ABSTRACT

An attempt to estimate horizontal divergence and the vertical component of relative
vorticity at small scales is made using measurements from Internal Wave Experiment.
These two quantities are very useful to decompose the small-scale motion into the vortical
and gravity modes. Fluctuations of horizontal divergence and relatie vorticity estimated
using a three-point array are found to be attenuated and mutually contaminated at small
horizontal scales. Assuming a horizontal isotropy condition, these sampling errors can be
represented as two array response functions which act as horizontal wavenumber spectral
windows imposing on wavenumber-frequency spectra of horizontal divergence and relative
vorticity. Examining effects of array response functions for the GM-76 spectrum suggests
that both the attenuation and contamination effects must be considered in obtaining the
relative vorticity spectrum, whereas only the attenuation effect is important for the
horizontal divergence spectrum since the contamination from relative vorticity is
negligible.

INTRODUCTION

Small-scale motions in the ocean consist of both gravity waves and vortical motion. The
vortical motion is distinguished from gravity waves by carrying the perturbation potential
vorticity in the system. Therefore, it is likely that small-scale vortical motion plays an
important role in the enstrophy (variance of potential vorticity) cascade in the ocean.

A normal mode decomposition scheme was proposed by Miller (1984) to project
small-scale oceanic motion into the gravity and vortical modes. It can be achieved most
conveniently using fields of horizontal divergence, the vertical component of relative
vorticity, and vortex stretching (Lien, 1990). Attempts to estimate these three fields at
small scales in the ocear. have been made using measurements from Internal Wave
Experiment (IWEX; Briscoe, 1975) by Miiller et al. (1988) and by Lien (1990). Estimates
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of "area-averaged" horizontal divergence and relative vorticity were obtained using
spatially discrete velocity measurements.

It was pointed out by Prater (1989) and Kunze et al. (1990) that the three-point array of
IWEX will detect "relative vorticity" even in a pure horizontal divergence flow field (free
of relative vorticity). This paper examines potential errors of estimates cf horizontal
divergence and relative vorticity. The estimation of horizontal divergence and relative
vorticity at small scales using IWEX measurements is described in the following section.
Next, their spectral analysis, associated array response functions, and their effects for the
GM-76 spectrum model are discussed. Conclusions are summarized in the last section.

ESTIMATES OF HORIZONTAL DIVERGENCE (HD) AND
RELATIVE VORTICITY (RV)

An attempt to separate small-scale oceanic fluctuations into the gravity and vortical
modes can be achieved conveniently using fields of HD, RV, and VS at small scales. To
estimate these fields requires oceanic measurements of horizontal velocity and temperature
with a sufficient spatial resolution. Oceanic measurements from IWEX seem to be suitable
for such calculations.

The IWEX was conducted in late 1973 over a 42-day period. A trimooring array was
designed on which 20 current meters (17 VACM and 3 EG&G 850) and temperature
sensors were deployed in the main thermocline of the Sargasso Sea (27044' N, 69'51/ W).
Horizontal velocity components, temperature, and temperature difference over a vertical
distance of 1.74 m were measured. Horizontal spacing between sensors ranged from 1.4 m
to 1600 m and vertical spacing from 2.1 m to 1447 m. Sampling interval was 225 s, except
at the lowest level (2050 m depth) which was sampled every 900 s. The trimooril) drray
was a nearly perfect tetrahedron (roughly 6 km on a side) with the apex at the top of the
main thermocline at 604 m depth and the deepest current meter and temperature sensor
at a depth of 2050 m. A schematic diagram of IWEX is shown in Figure 1. The mooring
was very stable during the entire experiment. Pressure records showed ±0.2 m
displacement at the apex and about ±6 m at 3000 m. A detailed description of IWEX was
given by Tarbell et al. (1976). The IWEX measurements provide an opportunity to
estimate spatial gradients in the time and space scales of small-scale motions.
Measurements from 15 current meters and temperature sensors are used at fixe horizontal
planes where measurements are available at all three legs. Characteristics of the five
IWEX levels are described in Table 1.

Area-averaged horizontal divergence HD and relative vorticity RV can be obtained from
velocity measurements on a horizontal plane using Stokes' and Gauss' theorems as
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Figure 1. Schematic view of the geometry of the IWEX array and profiles of the Brunt-
V~iisfili frequency N(z) and horizontal radius R(z). Points indicate current meter posi-
tions. There are ten more current meters near the apex which are not shown. The levels
that contain three current meters are indicated. The maximum Brunt-Vaisala frequency
in the main thermocline is Na. = 2.76 cph. In the deep water column below 2050 m, N is
almost constant, Ndw = 0.36 cph

ifV__= in _ .d_,(

_R -= u a t. (2)

Here t and n are the tangential and the normal unit vectors along the circumference of an
area A, and u is the horizontal velocity vector.

Assuming N velocity sensors (N = 3 for IWEX trimooring array) evenly located on a

circle on a horizontal plane (Figure 2), 7T and TV are estimated by approximating the
circle integration by a discrete sum of the radial and normal velocity components along

the circle, i.e.,
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Figure 2. Configuration of N current sensors evenly located on a circle at a horizontal
plane. Three larger dots, indexed by A, B, and C, denote positions of current sensors on
the IWEX trimooring array. The radius of the circle is R, 0 is the orientation of the
current sensor counterclockwise from the east, and R is the corresponding position vector.

Table 1. Characteristics of five IWEX levels with three current meters

Level Depth (m) Radius (m) N (cph) Number of sampling

2 606 4.9 2.54 1800

5 640 25.4 2.60 12000

6 731 80.3 2.76 12000

10 1023 260.0 2.05 4800

14 2050 925.0 0.66 3900
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1 N 127rR
/D = rrR n Zu - ' (3)

n=1

-- 1 N (n) 27r RRV = Y F- u, "7' (4)
n=1W (4)

where R is the radius of the circle, and u ) and u ) are the radial and normal velocity
components of the nth sensor defined as

Urn) = Ur(R, On) = u(R, O)cos(On) + v(R, On)si(On), (5)

ut) = ut(R,O,) = -u(R,On)sin(O,) + v(R,On)cos(O). (6)

Here, On is the angle counterclockwise from the east of the nth current sensor. For the

IWEX trimooring array, area- averaged horizontal divergence HD and relative vorticity

RV are estimated as

HD = R ( Uc ) + OR (VC VA), (7)

77 = 2 (VA +VVC _VB) _ 1 (VC UA). (8)

Alternatively, 77T and 77 can be obtained using velocity gradients estimated from the

least squares fitting of horizontal velocity measurements. These two approaches are found

to be equivalent. Time series of HD and RV at five different depths of IWEX are

obtained. Applying the run test and the goodness test, the time series of lID and 7V are

found to be stationary and Gaussian distributed (Lien, 1990).

SPECTRAL ANALYSIS OF HD and RV

Time series of 7T and 7RV are first divided into segments with a length of 1024 (210)

data points. Successive segments are 50% overlapped. Each segment is subjected to a

Hanning window and is fast Fourier transformed. The one-sided spectrum, averaged over

all segments, is further averaged over adjacent frequency components resulting in 40

frequency points spaced about equally on a logarithmic scale.
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Measurement errors on estimates of VD- and 7W have been discussed by Miiller et al.
(1988). Variance due to the instrumental noise can be estimated by separating velocity
measurements at level 2 (R = 4.9 m) into coherent signal and incoherent noise
components. At level 2, observed frequency spectra of 11D and RV are dominated by the
incoherent noise component and will be excluded from our analysis. At other levels,
variance due to incoherent noise is removed from the frequency spectral estimates of HD
and WV.

Frequency spectra of TD- and 7 at levels 5, 6, 10, and 14 are displayed in Figures 3 and
4. Frequency spectra SH---(w) and SW-(w) are of the same order at each level and decrease
systematically with increasing radius or depth.

Array Response Function

If WT and 7RV are obtained from N velocity measurements located on a circle with a
radius R, their frequency spectral estimates S-H-D(w; R, N) and S-(w; R, N) do not
represent exactly area-averaged frequency spectra of horizontal divergence and relative
vorticity.

Area-averaged horizontal divergence HD can be expressed in terms of Fourier transforms
as

7D= 2 N j d'k [u(k)e-kncos(On) + v(k)e 23.sin(On)I (9)NRoE f + •

Assuming statistical homogeneity and stationarity conditions, frequency spectral
estimates S-H--(w; R, N) can be written as

S-(w; R, N) = N2 R2 zdk - )

n=1 n1=l O

{PU(k,w)cos(O,)cos(On) + P,,(k,w)sin(On)sin(On') (10)

+ Pu(k,w)cos(On)sin(On,) + Pu(kw)sin(On)COS(On,))

Here, Puu(k,w), Pv(k,w), P,,(k,w), and P,,,(k,w) are wavenumber-frequency
autospectra of u and v, and wavenumber-frequency co-spectra between u and v.
Assuming a horizontally isotropic flow field, velocity frequency spectra at a given space
lag (An - Rn') can be expressed as

- An') = 1 1 [Jo(a?) + cos(On + On,)J 2(ar)] SHD(a,W)
OF- 2a 2

(11)

r [Jo(ar) - cos(O, + 0,,)J 2(ar)] S 2V(a,w)
214
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Figure 3. Observed frequency spectra of Figure 4. Observed frequency spectra of
horizontal divergence at four IWEX levels relative vorticity at four IWEX levels (solid
(solid lines) and comparison with the GM- lines) and comparison with the GM-76
76 spectrum model (dotted lines). The at- spectrum model (dotted lines). The attenua-
tenuation and contamination array response tion and contamination array response func-
functions have been applied to the GM tions have been applied to the GM model.
model. Solid circles show agreement be- Solid circles show agreement between ob-
tween observed spectral estimates and the served spectral estimates and the GM model
GM model within 95% confidence interval, within 95% confidence interval.

- i~') = da I[Jo(ar) - cos(9,, + 0O,')J2(ar)] SIID(a,W)
or 2a 2

(12)

+ [Jo(ar) + coS(On + O')J2(ar)] SRV (a'W)

Pu(w ;R - R,,) = Pv.(P;t" -R",) = f daJ2 (ar)sin(O +O,) S H D(a 'w) - SRV(a,w)
Jo 2a 2

(13)
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where r = 2aRsin(L%0 "), and a is the magnitude of horizontal wavenumber (after
Batchelor, 1953). Jo and J2 are Bessel functions of zeroth and second orders.

Therefore, the frequency spectral estimate S-H-D(w; R, N) can b- expressed in terms of real
wavenumber-frequency spectra SHD(a,w) and SRv(a,w) as

S-T--(w; R, N) = dce {SHD(a,w)F(aR, N) + SRv(a,w)G(aR, N)}. (14)

Similarly, the frequency spectral estimate of area-averaged relative vorticity can be
expressed as

Sw(w;R,N) = j0 da{SRv(a, w)F(aR,N) + SHD(a, w)G(aR,N)} , (15)

where

2 NNF(R, N) = N22 2
n=lin'= (16)

[COS(On - On1)JO (2aRsin( On 2 On')) + J2 (2aRsin(0 On )n

and

2 N N

G(aR, N) = N2 2R2E N
n=I n1=1 

(17)

[COS(On - On1)JO (2aRsin(0 O nOn)) - J2 (2a~sin(' 2 O )]
For the IWEX configuration (N = 3), two array response functions have the form of

F(aR) = 2 [1 - Jo(v'3aR) + 2J 2(vf3aR)] (18)
3a2R 2

G(a) = 2 [1- (- 2J(v )] .(19)
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Array response functions F(aR, N) and G(aR, N) are displayed in Figures 5 and 6 for
cases of three, nine, and an infinite number of current sensors (N = 3,9, and 00) along a
circle on a horizontal plane. The array response function F behaves as a lowpass
wavenumber filter representing the effect of the finite size of the circle. Fluctuations of
horizontal divergence and relative vorticity at scales smaller than the size of the circle are
attenuated in our estimates. Therefore, F is termed the attenuation array response
function. Note that increasing the number of current sensors on the circle cannot
eliminate the attenuation problem. The array response function G behaves as a bandpass
wavenumber filter. Fluctuations of horizontal divergence and relative vorticity are

mutually contaminated in our estimates at horizontal scale comparable to the sensor
separation since the tangential and normal components of horizontal velocity at scale
smaller than the sensor separation is not detectable. The peak of the contamination array
response function moves to higher wavenumber (smaller horizontal scale) and its
magnitude is reduced with the increasing number of current sensors on the circle. In the
ideal case of an infinite number of current sensors on the circle, the contamination array
response function vanishes.
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< 0.4

0.02
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Figure 5. Attenuation array response func- Figure 6. Contamination array response
tion for cases of 3 (solid line), 9 (dotted function for cases of 3 (solid line), 9 (dotted
line), and an infinite number of current sen- line), and an infinite number of current sen-
sors on a horizontal plane. For the case of sors on a horizontal plane. For the case of
an infinite number of current sensors, an infinite numbter of current sensors, the
F(aR) = 4j,2 (aR)I(aR)2 , and it is not dis- contamination array response function
tinguishable from the case of 9 current sen- vanishes.
sors.
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Effects of Array Response Functions for GM-76 Spectrum

Using the polarization relation of internal waves, frequency spectra S(H-Dw; R, N = 3) and
Sw7 (w; R, N = 3) of the GM-76 spectrum model (Cairns and Williams, 1976) are
obtained. Effects of array response functions (see equations 18 and 19) are evaluated
employing the wavenumber structure of the GM model in which a vertical cutoff
wavenumber of 0.1 cpm is assigned.

Characteristic wavenumbers of the attenuation and contamination array response
functions are estimated (Table 2) which vary for different array sizes and sensor
separations at four IWEX levels. Note that the characteristic wavenumbers are the
property of array response functions, and do not depend on the GM model. Applying the
vertical cutoff wavenumber prescribed in the GM model and the dispersion relation of
linear internal waves, frequency regimes (Table 2) are identified in which the GM
spectrum is affected by array response functions.

The effects of array response functions for the GM model are illustrated in Figures 7 and 8
in which horizontal divergence and relative vorticity frequency spectra of the GM model
at IWEX level 10 are estimated. In the absence of array response functions, the horizontal
divergence and relative vorticity frequency spectra of the GM model have zero and -2
spectral slopes, respectively. By incorporating the attenuation array response functions,
equivalent to area-averaging horizontal divergence and relative vorticity on a circle,
frequency spectral slopes of horizontal divergence and relative vorticity become steeper.
Since high frequency waves are arsociated with high wavenumbers whose fluctuations are
attenuated, the attenuation is more apparent in the high frequency regime. Including the
contamination from relative vorticity, the GM frequency spectrum of horizontal divergence
is not significantly modified since the spectral ratio of relative vorticity to horizontal
divergence is f 2/l 2 for linear internal waves. On the contrary, the GM frequency
spectrum of relative vorticity is markedly modified because of the contamination from
horizontal divergence (Figure 8). Agreements between observed frequency spectra of
horizontal divergence and relative vorticity with the corresponding GM spectra are greatly
improved by including attenuation and contamination array response functions in the
model. Both array response functions must be considered in the calculation of relative
vorticity frequency spectrum of the GM model, whereas only the attenuation array
response function is important to estimate the horizontal divergence spectrum of the GM
model. The comparison of observed frequency spectra of horizontal divergence and
relative vorticity with the corresponding GM model including both array response
functions at all four levels is presented in Figures 3 and 4. Note that the GM model
predicts 71D much better than RV. This discrepancy might be due to the existence of
vortical motion, which has RV but noHID, or due to the inadequacy of the GM model.
This issue is more fully discussed by Lien and Miiller (1991).
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Figure 7. Effects of array response functions Figure 8. Effects of array response functions
on the GM-76 spectrum. The thick solid on the GM-76 spectrum. The thick solid
line denotes the frequency spectral estimate line denotes the frequency spectral estimate
SHD(W-) at IWEX level 10. The GM SRV(w) at IWEX level 10. The GM relative
horizontal divergence spectrum in the ab- vorticity spectrum in the absence of attenua-
sence of attenuation and contamination ef- tion and contamination effects is shown by
fects is shown by the dashed line. The the dashed line. The dotted line is the rela-
dotted line is the horizontal divergence tive vorticity spectrum of the GM model in-
spectrum of the GM model including the at- cluding the attenuation effect, and the thin
tenuation effect, and the thin solid line in- solid line includes both the attenuation and
cludes both the attenuation and contamination effects.
contamination effects. The dotted and the
thin solid lines are not distinguishable.

SUMMARY AND DISCUSSION

The estimation of horizontal divergence and relative vorticity is motivated by the need to
conveniently project small-scale motion into the gravity and vortical modes using the
normal mode decomposition. This paper addresses the practical problems of estimating
horizontal divergence and relative vorticity using discrete sampling in space of horizontal
velocity measurements.
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Table 2. Characteristic horizontal wavenumbers of array response functions and the
corresponding frequencies obtained by assuming the dispersion relation of linear internal
waves and the vertical cutoff wavenumber 0, of 0.1 cpm. The attenuation array response
function drops to 0.90 at at, and decreases with increasing horizontal wavenumber by a
-2 power law. Frequency spectra of HD and RV are affected by the attenuation array

response function at frequencies greater than wt(= /[N2ac + f2i32]/[a + i32]). At lower
frequencies, there is no attenuation effect. The contamination array response function
behaves as a bandpass filter with its peak at a, with an amplitude about 0.1, and
decreases at a -2 power law away from a,. Frequency spectra of HD and RV do not have
significant effects of contamination array response function at frequencies smaller than
w(= N77r + f2 /[aT + ) h

Level at (cpm) wt (cph) a, (cpm) wc (cph)

5 6.3 X 10 - 3  0.12 1.7 x 10-2 0.44

6 2.0 x 10- 3  0.05 5.4 X 10- 3  0.15

10 6.0 x 10- 4  0.04 1.7 x 10- 3  0.05

14 2.0 x 10- 1 0.04 5.0 x 10- 4  0.04

There are two types of sampling errors in the estimation of horizontal divergence and
relative vorticity. Fluctuations of horizontal divergence and relative vorticity are
attenuated and mutually contaminated at smaller horizontal scales corresponding to the
array size and the sensor separation. Decontamination requires horizontal wavenumber
structures of horizontal divergence and relative vorticity, which are not yet available.
Moreover, the contamination problem causes the normal mode decompostion to be
infeasible using IWEX measurements (Lien, 1990).

'7ffects of array response functions were examined using the GM-76 spectrum model. It
was found that both the attenuation and contamination error should be considered in the
calculation of the relative vorticity spectrum. Since the variance of relative vorticity is
much smaller thain that of horizontal divergence for linear internal waves (except on the
inertial frequency), only the attenuation effect needs to be considered in obtaining the
horizontal divergence spectrum, and the contamination from the relative vorticitv is
negligible.
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ABSTRACT

Two velocity and temperature profile surveys collected near Ampere Seamount in the eastern North
Atlantic reveal ertel vorticity finestructure on horizontal scales of 3-7 km and vertical wavelengths
of 40-400 m (Burger numbers of 0.05-30). Just as on basin scales, this finescale ertel vorticity
signal is dominated by stretching. The dynamic signal, as characterized by the %lative vorticity and
horizontal convergence, is consistent with the GM internal wave model and is dominated by near-
inertial waves on the resolved scales. The dominance of stretching indicates that ertel vorticity
finestructure is associated with passive density finestructure of very low aspect ratio. This suggests
that it was not formed recently by flow separation at the seamount but might be an artifact of
subduction of surface mixed layers or injection of benthic boundary layers into the pycnocline.

INTRODUCTION

At the large wavelengths that dominate horizontal velocity and vertical displacement in the ocean
interior, fluctuations are largely linear, allowing identification of subinertial frequency flows as
quasigeostrophic and superinertial motions as internal gravity waves. But at high wavenumbers,
advective nonlinearity acts to Doppler shift and alias variance across frequency space, making
identification of dynamics from Eulerian frequency impossible; many intrinsic frequencies will
contribute to the same Eulerian frequency. Given that the aspect ratios of the dominant finescale
motions are _fiN = 0.01 (Marmorino et al., 1987; Gregg et al., 1986, Itsweire et al., 1989),
vertical advection by low-mode internal waves should be the main perpetrator of advective
nonlinearity.

Using current-meter and temperature time-series from the IWEX trimooring array, Briscoe (1977)
and Muller et al. (1978) found finestructure in the internal-wave frequency band with amplitudes of
2 cm s-l and vertical scales of 2 m that contained too much velocity relative to temperature variance
to be explained by linear internal wave dynamics. Excess finescale velocity in the continuum
frequency band was also reported by Eriksen (1978). Kunze et al. (1990) confirmed this result and
found excess strain in the near-inertial band. For linear internal waves, the shear-to-strain ratio
VzI(N~z) = I at intermediate intrinsic frequencies,f<< (Oo<< N. As 0Oo --> f, this ratio
approaches infinity while as wo - N, it approaches zero. Muller et al. (1978) also found that the
vertical coherence scale for velocity was smaller than for temperature. Two sets of dynamics have
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been proposed to explain the velocity finestructure: stratified two-dimensional turbulence (vortical
mode) (Holloway, 1983; Mtiller, 1984) and near-inertial waves (Kunze et al., 1990). Near-inertial
waves dominate variance at larger scales (e.g., Garrett and Munk, 1979). Kunze et al.
demonstrated that the finestructure properties were consistent with a finescale intemal wave
spectrum dominated by near-inertial waves. Resolving the dynamics of the finescale has important
implications for stirring and mixing of water properties.

Stratified two-dimensional turbulence is the stratified, nonlinear analog of two-dimensional
quasigeostrophic turbulence (Riley et al., 1981; Lilly, 1983; MUller, 1984). Such motion would
have subinertial intrinsic frequencies. Mtller (1984) referred to stratified two-dimensional
turbulence as 'vortical mode' because ertel vorticity anomalies can be associated with it while
internal gravity waves can have no ertel vorticity fluctuations associated with them. Following a
water parcel, ertel vorticity can only be modified by irreversible processes (Ertel, 1942; Pedlosky,
1978; Haynes and McIntyre, 1986). For example, Lelong and Riley (1991) have shown that
wave/wave and wave/vortex interactions do not modify ertel vorticity. Thus, while internal waves
can carry energy into the ocean interior, ertel vorticity anomalies are tied to a water parcel. Vortices
have been observed in laboratory stratified-wake experiments (Lin and Pao, 1979) and as a decay
product in numerical simulations of dissipative turbulence (Riley et al., 1981; Staquet and Riley,
1989; Herring and Metais, 1989). They also appear in numerical simulations of 'forced internal
waves' if the forcing projects on ertel vorticity anomalies (Metais and Herring, 1989; Holloway and
Ramsden, 1990). Metais and Herring found that a numerically simulated field of random internal
waves without ertel vorticity anomalies did not create vortical mode. Because turbulence and
mixing are weak and confined to small vertical scales in the ocean interior (Moum and Osborn,
1986; Gregg, 1987; Gregg, 1989; Yamazaki et al., 1990), we anticipate that ertel vorticity
anomalies produced there to be likewise weak and confined to small vertical scales where molecular
viscosity will rapidly eliminate any dynamic signal. However, considerable finestructure may be
generated in regions of strong forcing, such as at boundaries, and survive little affected as it is
carried into the ocean interior by subduction. The question of what fractions of finescale variance
in the ocean are internal waves and stratified two-dimensional turbulence can only be answered with
measurements.

A first attempt to estimate ertel vorticity on the finescale was undertaken by MUller et al. (1988).
Using the IWEX array velocity measurements, they estimated the relative vorticity directly and
stretching from the time-integral of horizontal convergence. The vorticity and convergence spectra
were identical. Kunze et al. (1990) questioned their claim of having found an ertel vorticity signal
on the grounds that (i) like quasigeostrophic flow, vortical mode should have little or no horizontal
convergence so their 'stretching' signal was intcrnal wave strain, (ii) near-inertial internal waves
have vorticity as well as convergence, and (iii) in a blue spectra, a three-point array will detect
'vorticity' even in a pure convergence field and vice versa. Lien (1990) illustrated that this can
explain the large horizontal scales from IWEX. But at radii of 25 m, the IWEX-aliased GM
vorticity lies below GM convergence unlike the measurements. On these scales, GM isopycnal
slopes tilt vertical shear into vertical vorticity sufficiently to explain the measurements. Thus, the
IWEX measurements of velocity finestructure are explicable as internal waves, and MUller et al.'s
(1988) conclusion that they identified ertel vorticity finestructure is suspect.
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Using measurements from a neutrally buoyant float, Kunze et al. (1990) showed that, given typical
finescale aspect ratios <flN = 0.01 (Marmorino et al., 1987; Gregg et al., 1986, Itsweire et al.,
1989), the observed finescale shear-to-strain ratio of 2.2 was too high to be explained by stratified
two-dimensional turbulence. However, it was consistent with a finescale internal wave spectrum
dominated by near-inertial waves. Indeed, the observed shear-to-strain ratio is only slightly above
the GM value of 1.7 (Munk, 1981). The semi-Lagrangian strain spectra of Sherman and Pinkel
(1991) supports the interpretation that mos. shear variance at high wavenumber is Doppler-smeared
near-inertial motions rather than vortical mode. In contrast, D'Asaro and Morehead (1991) found
that the incoherent signal at 40-m vertical wavelength in velocity profile surveys had a potential-to-
horizontal kinetic energy ratio (PEIHKE) and Burger number (N2kH2/f2kz2) consistent with
vortical mode and not internal wave dynamics (Fig. 1). These measurements were collected under
the ice in the Beaufort Sea. The incoherent (vortical) signal contained as much energy as the high-
frequency internal waves in the weak internal wave regime under the ice. None of these
measurements were able to estimate ertel vorticity.
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Figure 1. A dynamic diagram of the ratio of potential-to-horizontal kinetic energy PEIHKE versus
Burger number (N2 kH2)/(f2 kz2 ) from D'Asaro and Morehead (1991). The S-curve is the
consistency relation (marked with intrinsic frequencies) for internal waves with
N/f= 70 [PEIHKE = L/(B+2)]. The thick-dashed diagonal corresponds to geostrophy
[PEIHKE = 1/B] and the thick solid diagonals to high Rossby number vortical mode [PE/HKE
Ro2/B = 1/Ri]. The two blocks of stippling correspond to the coherent signal (left), which is in the
near-inertial wave part of the diagram, and the incoherent signal (right), which is in the geostrophic/
vortical regime, from D'Asaro and Mormhead's XCP surveys in the Beaufort Sea. The two vertical
dotted lines bound the Burger numbers resolved by the Ampere Seamount surveys.
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In September 1988, an expedition was made to Ampere Seamount at 350 03.5' N, 120 52.2' W in
the eastern North Atlantic (Fig. 2) to look for evidence of ertel vorticity finestructure which would
be a signature of stratified two-dimensional turbulence. The Coriolis frequency at this latitude is
8.3x10-5 s -1 It was thought that the likelihood of finding this signal would be greater in the
vicinity of a seamount where flow separation might lead to shed eddies in the wake. However, as
no finescale ertel vorticity measurements have been made in the ocean, this was not crucial. Eddy-
shedding did not appear to be playing a role in the data we collected.

38"N

X I £fr PORTUGAL SPAIN

37.-Glocd

536°

Ampoere

<~ Seamount 
OOC

14W 13 12- 11- 10" 8 N 7. 6'
Lor jde

Figure 2. Bathymetry in the eastern North Atlantic showing the location of Ampere Seamount at
350 04'N, 120 52'W outside the mouth of the Gulf of Cadiz The summit comes within 53 m of the

surface.

MEASUREMENTS

We first undertook an XBT box survey 60 km on a side around the seamount (Fig. 3) to look for
mesoscale impinging geostrophic flow. No signal was apparent. Four drifters were then deployed
within 10 km of the summit to examine the near-field mean flow. Three of these drifters were
recovered and redeployed on the eastern flank for a total of seven drifter tracks. The drifters were
drogued to 100-200 m using a high-drag line in that depth range and a low-drag line to the surface
(Drever and Kennelly, 1991). Radar reflectors were used to locate the drifters. The ship came
alongside each drifter to determine its range and beating to a radar beacon moored on the summit
(Fig. 3). Range is accurate to ±200 m and bearing to ±2'. Positioning based on Loran C was good
to one kilometer in x and y. The drifters were tracked from 6-10 September 1988. On the northern
flank of the seamount and to the east in an interior boundary layer, drifters 1 and 2 moved
persistently toward the east with average speeds of 5-7 cm s"1 (Fig. 4). Tidal fluctuations of
±5 cm s "1 were also primarily in the u velocity component. On the eastern flank, motion was
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weak and random for the first three days, then accelerated to the south during 9 September,
reaching speeds of -10 cm s- 1. Drifter 3, deployed southwest of the summit, moved southward
at -13 cm s-1. However, on recovery it was discovered to have lost its drogue so its track is not
representative of the flow at 100-200 m depth. The last drifter was recovered in the middle of 9
September.

Based on the lateral shear between drifters on the northern and eastern flanks of Ampere Seamount
during the first three days of the drifter deployment (Fig. 5), which correspond to vorticities -0.5f,
it was thought that flow separation was most likely to occur in the northeast comer of the summit.
Eddies geuerated by this mechanism would be found east and north of the summit so two cross-
shaped finescale expendable current profiler (XCP) surveys were conducted near the northeast
flank on the afternoons of 8 and 9 September (Fig. 3). Six CTD casts to 2000-m depth were made
here between the XCP surveys to determine the local Ta--relation. The XCP surveys contained 28
and 27 probes with 12 to 14 XCPs in each leg and drop spacings of 0.3-1 km. Survey 1 was
effectively 4 km in diameter and survey 2 was 7 km across. Each survey was completed in three
hours in an effort to minimize biasing of the spatial gradients by temporal variability. Because these
horizontal scales are dominated by near-inertial waves, this appears to have been effective. Vertical
wavenumber spectra of profile sums and differences iear the intersection of the legs suggest that
temporal variability has little impact on wavelengths greater than 100 m.
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Expendable current profilers electromagnetically measure the horizontal velocity (u , v) relative to a
depth-independent constant (e.g., measures the baroclinic flow) and measure temperature T with an
XBT thermistor. Data values are recordea every 0.3 m from the surface to -1600-m depth. The
upper 50 m is generally contaminated by temporally aliased velocities associated with the surface
swell. In the pycnocline, the oceanic signal typically falls below the instrumental noise level for
wavelengths smaller than 10 m. Therefore, standard pre-analysis XCP processing smooths the raw
data with a 6-m triangular window every 3 m. The velocities have rms errors of ±0.4 cm s"1 and
temperature errors of -0.15 'C. We will be using these data to compute vertical and horizontal
gradients. The velocity error corresponds to shear errors of ±10 4 s"1 - 0.03N over 40 m (vertical)
and ±10-6 s "1 - 0.013f over 4 km (horizontal). The temperature error corresponds to
+4x10-3 C m- 1 - 4x10-6 s--2 - 0.3N2 over40 m and ±4x10"5°C m 1 = 4x10 8 s2 -0.15fN

over 4 km given dbldT - 10-3 m s-2 'C-1. Thus, with comparison tof and N, the velocity
contributes smaller errors to an ertel vorticity signal (see below) than temperature. Assuming
resolved verticai scales of 40-400 m and horizontal scales of 3-7 km , the range of resolved Bu;,ger
number is 0.05-30 (between the dotted vertical lines in Fig. 1). For intern.d wave dynamics, this
range includes frequencies up to 3f. For vortical dynamics, Rossby numbers up to ten are in
principle measurable.
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Figure 5. Drifter velocities around Ampere Seaount for the period prior to the acceleration to the
south on the eastern flank.

ERTEL VORTICITY

Review
Foliowing a- water parcel, the erel vorticity cannot be modified except by irreversible processes:external forcing, dissipative turbulence and mixing (Ertel, 1942; Pedlosky, 1978). Thus, no ertel.vorticity fluuations are associated with nondissipative internal waves. For linear internal waves,the linear stretching and relative vorticity contributions to ertel vorticity are equal and opposite. Athigh wavenumbers where nonlinearity becomes important, nonlinear contributions of the erelvorticity may contribute, but no total ertel vorticity anomalies arise in the absence of internal wave
dissipation (Lelong and Riley, 199 1).
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The ertel vorticity will be defined here as the dot product of the total vorticity (2D + VxV) and the
gradient of the buoyancy V( A + b)

1-I = (2W+ Vx V).V( B +b) (1)

where Earth's rotation, 2W2 = (0, 2M2 cos(lat°), 2. sin(lat°)) = (O,f cot(lat),.), and the
buoyancy B + b = -g3plpo has been split into a largescale background B(z) varying only with
depth and smaller scale anomalies b(xy,z,t). The splitting of the vertical buoyancy gradient is not
necessary but is common practice and a convenient way of separating large and small scal s.
Neglecting the meridional component of Earth's rotation and the vertical velocity w, Eq. (1) can be
expanded into a background, linear and nonlinear part

1l =fN2 +fbz + (vx -uy) NV2 + (vx- uy)bz -bxvz + byuz (2)

(i) (ii) (iii) (iv) Mv (vi)

where subscripts denote derivatives and Fj 2 = dBldz is the background buoyancy frequency. The
background ertel vorticity (i) involves only the smoothed stratification B(z) and the planetary
vorticityf. The linear ertel vorticity anomaly is made up of buoyancy-gradient anomalies (ii) and
relative vorticity (iii). Nonlinear ertel voiticity anomalies arise from coupling of buoyancy-gradient
anomalies and relative vorticity (iv) and the twisting terms (v) and (vi).

Dat

Estimating the different components of (2) requires determination of both horizontal and vertical
gradients of u, v and b. This is achievable with cross-shaped XCP surveys provided that the
surveys are coherent so that (i) horizontal gradients can be estimated and (ii) temperature can be
used as a proxy for buoyancy.

To demonstrate that the survey was coherent, Fig. 6 displays the eastwest section of east velocity u
fron, survey 2. Fluctuations of ±10 cm s-1 are seen on scales of tens to hundreds of meters with
vertical structure down to scales of 50 m coherent across much of the transect. Vertical least-
squares cubic fits to the profiles (dashed lines) reveal little variance associated with vertical
wavelengths greater than 1000 m. As wavelengths -1000 m can be affected by the barotropic
offset when profiles are not of identical length and our main interest here is in the finescale
(< 100 in), the cubic fits were removed before subsequent analysis. Because the profiles are
horizontally coherent, we are justified in estimating the horizontal gradients d/dx from the eastwest
legs and didy from the northsouth legs using least-squares fits. These are then combined to
determine dynamically relevant variables. Figure 7a displays the relative vorticity (vx - uy)/f for
survey I as a function of depth z and the horizontal scale over which the fit was performed Ar. As
the fitting scale Ar increases, so does the number of profiles going into the fit (number at bottom of
each profile) while the standard deviation (stippling), as determined using a bootstrap technique,
decreases. At A--4 kIn , the relative vorticity has significant fluctuations on scales of tens to
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Figure 6. A sample section of u velocity profiles from the east-west leg of XCP survey 2. The
dashed lines indicate cubic fits to the profiles, Fluctuations coherent over much of the transect are
evident down to scales of tens of meters.

hundreds of meters with rms values of 0.2-0.3f, an order of magnitude above instrument noise.
Unresolved oceanic variance is -0. If The horizontal convergence (UX + vy)f for survey I (Fig.
7b) has similar characteristics. Inertially rotating the velocity profiles to a common time before
carrying out the fits did not alter the details of the vorticity and convergence profiles appreciably.

Figure 8 displays the T,--relation from the CTD casts collected near the seamount. The relation is
tight for temperatures T < 10 'C (depths greater than 1250 mn) and for 12 'C < T < 16 'C
(150-600 mn depth) but not in the salt-stratified isothermal layer between 600 and 1200 mn, nor in
the upper 150 m where water-mass gradients are evident. In this paper we will confine our
attention to 150-600 m depth and use b(T) = TbidT based on least-squares fits to the CTD data to
relate buoyancy to temperature. For 150-600 m depth, dbdT = 10-3 m uh of' and the buoyancy
frequency n o3.3-3.8 x o- 3s .
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Figure 7a. (Facing page, top) Survey I relative vorticity (Vx - uy)If from least-squares hcrizontal

fits as function of depth z and the fitting scale Ar. As the fitting scale increases, the number of
drops in the fit increases (numbers at bottom of each profile) and the standard deviation (stippling)
diminishes. For a fitting scale Ar = 4 km , significant fluctuations occur on scales greater than 50
m with rms values of 0.2-0.3f.

Figure 7b. (Facing page, bottom) As in Fig. 7a but for horizontal convergence (Ux + vy)/f.
Magnitudes and scales are comparable to those of relative vorticity.
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Spectra

The sum of the five linear and nonlinear terms of the ertel vorticity (2) reveals that there is ertel
vorticity finestructure present between 150- and 600-m depth. The nonlinear terms contribute little
to the signal, that is, on the scales of the survey, the ertel vorticity is linear. The stretching term
dominates. These results are most clearly seen in vertical wavenumber spectra of the ertel vorticity
terms (Fig. 9). The spectra are presented in both log-log and variance-preserving forms. Figure 9a
displays the ertel vorticity component spectra for survey I and a fitting scale Ar=4 km and Fig. 9b
for survey 2 and Ar=-7 km. The stretchingfjbz (thick solid) clearly dominates the variance, peaking
at 50-100 m wavelength. This scale is at least in part due to the horizontal averaging over the fitting
scale which smooths over higher wavenumbers. The nonlinear terms are at least an order of
magnitude smaller at all wavenumbers. The other linear term, the vorticity 7 2, is an order of
magnitude smaller than the stretching at 50-100 m wavelength but comparable in magnitude at
lower wavenumbers. It exceeds stretching in the lowest wavenumber band in the second s irvey
but this is a consequence of the cubic-fit separation of background IV 2 and anomaly bz which

167



Kunze and Sanford

10' ....... - .... 0.08

Ampere 1 2 bin-7 AtL4.3 km - N2

unrotated - -b z

10-0  
........ bxV zbyu

z
0.06

E 10"

0.04E

10-2

\ ." "..

.". .,10..' * .\'... , 0.02

10"1 " .."-0..... .0

10 '" 0.00
10'.............I .. .. .. ....... 0.08

Ampere 3 4 bin--6 Atr6.8 km - N
2

un roLated bz

10- o  
........ b v,

byu
z

0.06

10-1

. ~~~ i0. .. 0.....,

4 1 * 0 . 0 2

10-"

10"1" -0.00
10-

2  
10

"
1 10-2 10-1

kZ  (/t) k. (Um)

Figure 9. (a, top) Vertical wavenumber spectra from survey I with horizontal fitting scale Ar =4
km for the linear and nonlinear terms in the ertel vorticity (2) including stretchingfbz, vorticity
(Vx - Uy) g 2, (Vx - uy)bz, and twisting bxvz and -byuz terms. The spectra are presented in
both log-log (left) and variance-preserving (right) forms. The stretching peak at 60-m wavelength
contains an order of magnitude more variance than the other terms. At lower wavenumbers
(Xz > 100 m ), vorticity and stretching become comparable. At higher wavenumbers (Xz < 20 m)
vorticity slightly exceeds stretching due to the 12-m scale over which vertical gradients were
computed. (b, bottom, As in Fig. 9a but for survey 2 with 7-km fitting. The stretching excess
peak ranges from Xz = 30-160 m. Vorticity exceeds stretching at the lowest resolved wavenumber
as a consequence of the cubic fit used to separate g 2 and fbz.
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assigns all low wavenumber variance to the background. At high wavenumbers, vorticity exceeds
stretching because of the 12-m scale over which first-differencing to estimate bz was performed.

Comparing the measured stretching (strain) and vorticity spectra with the GM model (Figs. 10 and
11) reveals that, while the stretching greatly exceeds the GM model in the 50-100 m wavelength
band, the vorticity spectra are comparable to GM (for this comparison, the high horizontal
wavenumbers that the array does not resolve have been eliminated from the GM model with a
simple boxcar lowpass filter with a cutoff kH = 7c/Ar). In survey 1, the vorticity has a weak peak at
50-100 m but is generally similar in shape and level to GM. In survey 2, the vorticity lies on the
GM model except at the largest resolved vertical wavelength (Xz = 384 m). Thus, while stretching
greatly exceeds vorticity indicating the presence of vortical mode, the dynamic (velocity) signal
differs little from the GM model. This suggests that the velocity signal could be predominantly due
to internal waves. This can be tested by comparing the measured vorticity and convergence fields
with the filtered GM model (Fig. 12). For survey 1 and Ar= 4 km , the observations share with the
GM model the tendency for (i) convergence to exceed vorticity at low vertical wavenumbers, (ii)
convergence and vorticity to be nearly identical at high vertical wavenumbers, and (iii) convergence
to peak at slightly lower wavenumbers than vorticity. The same cannot be said of survey 2 where
vorticity slightly exceeds convergence at most wavenumbers. This is not consistent with internal-
wave dynamics for which (VH'V) -> (VHxV). We caution that the difference between the two
spectra is small and may not be significant. If this is the case, the survey 2 spectra suggest a larger
relative contribution from near-inertial waves [for which (Vi/.V) = (VHxV)] than the GM model
and survey 1.

For survey 1, for which the convergence exceeds the vorticity at most wavenumbers, consistent
with internal-wave dynamics, the ratio of these two quantities can be used to estimate the intrinsic
frequency. For wo << N, assuming a single dominant wave, the intrinsic frequenzy depends on
the ratio of the convergence V to the vorticity

V(kz)too(kz) =f -- (3)

Because of the similar treatment of vorticity and convergence, this estimate is more reliable than
other intercomparisons that could be made. The intrinsic frequency is displayed as a function of
vertical wavenumber in Fig. 13 for Ar=4 km. Where it falls below wo, the model assumptions fail.
For the variance-containing lower wavenumbers, the intrinsic frequencies lie between 1.2f and 3f.

SUMMARY AND CONCLUSIONS

Measurements were made in the vicinity of a seamount to look for ertel vorticity finestructure.
Since the ertel vorticity of a fluid parcel can only be modified by irreversible processes, no ertel
vorticity fluctuations are associated with internal gravity waves. Thus, finding ertel vorticity
finestructure would be evidence of non-internal wave dynamics on the finescale, that is, stratified
two-dimensional turbulence aka vortical mode (Riley et al, 1981; Lilly, 1983; Mttller, 1984). We
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Figure 10. (a, top). Comparison of the vertical wavenumber spectrum for 4- km averaged
stretchingjbz from survey 1 with that from the GM internal wave model filtered to remove
unresolved high horizontal wavenumbers (kH > it/Ar). The observed stretching is higher than GM
for 6x10-2 m-Izkz<2.5x 10-1 m'- - (b, bottom) Comparison of the vertical wavenumber
spectrum for the 4-kmn fit vorticity (VX - Uy) Fi 2 from survey 1 with the GM internial wave model.
Levels are comparable.
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Figure 11. (a, top). As in Fig. 10a but for a 7-km fitting scale on survey 2. Again, observed
stretching exceeds GM. (b, bottom) As in Fig. 10b but for a 7-km fitting scale on survey 2.
Observed vorticity exceeds GM at the largest resolved wavelength (Qz = 384 in).
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Figure 12a. (facing page, top). Comparison of the observed vertical wavenumber spectra for
horizontal convergence and relative vorticity from survey 1 (thick curves) with the GM model
integrated to horizontal wavenumbers of r/8.6 km -1 (thin curves). This upper integration bound is
consistent with the fitting scale of the horizontal gradients which filters out higher wavenumbers.
Like the GM model, the observed convergence exceeds vorticity at low wavenumbers and is
comparable at high wavenumbers. Also, the vorticity peaks at slightly higher wavenumbers than
convergence in both measurements and model. This suggests that the dynamic (velocity) signal is
dominated by internal waves.

Figure 12b. (facing page, bottom) As in Fig. 12a but for survey 2 and the GM model integrated to
horizontal wavenumbers of it/13.7 km -1. In this case, the observed vorticity slightly exceeds
convergence at most wavenumbers, inconsistent with linear internal wave dynamics. The
difference is small and may not be significant.

10 . ................. . . Figure 13. Intrinsic frequency versus vertical
wavenumber as inferred from the ratio of horizontal
convergence to relative vorticity (3) in survey 1 with
Ar=4.3 km (thick solid) and the ratio of convergence
to vorticity for the filtered GM model (dotted). This
assumes a single internal wave dominates. Values
belowf are inconsistent with (3). At variance-
containing wavenumbers, values lie between 1.2-

1. 2f 2.5f, consistent with the filtered GM model.

f

1'...................

!0- 1 '.. . I' . . . . . . . . .
10310-2 10-1
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caLtion that the reverse is not true. An absence of ertel vorticity finestructure does not preclude the
:xistence ot stratified two-dimensional turbulence because vortices can have compensating
contributions from the different terms (2) making up ertel vorticity (McWilliams, personal
communication, 1991).

The velocity and temperature profile surveys described here reveal ertel vorticity finestructure on
vertical wavelengths of 40-400 m and horizontal scales of 3-7 km near a seamount. As on basin
scales, these scales are dominated by stretchingfbz. Thus, away from strong eddies, stretching can
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be used to estimate ertel vorticity down to scales of a few kilometers. The implied high potential to
horizontal kinetic energy ratio and low aspect ratios (see Fig. 1) are reminiscent of the density
finestructure, aka pancake eddies or blini, discussed in the internal-wave literature in the early 70's
(Phillips, 1971; Garrett and Munk, 1971; McKean, 1974; Eriksen, 1978; Levine and Irish, 1981).
The stretching spectra peaks at -60-m wavelength.

The dynamic (velocity) signal contains roughly equal amounts of relative vorticity (Vx - uy)/f and
horizontal convergence (Ux + vy)/f. For comparison, high-frequency internal waves have greater
convergence than vorticity, near-inertial waves comparable convergence and vorticity, and stratified
two-dimensional turbulence greater vorticity than convergence. Thus, the velocity signal is most
consistent with near-inertial internal waves. This is borne out by the close agreement between the
observed and GM vertical wavenumber spectra for these quantities at least in survey 1. With the
exception of the byuz in survey I (Fig. 9a.), the nonlinear vorticity and twisting contributions to the
ertel vorticity, (Vx - uy)bz, bxvz and byuz, differ little from zero.

The velocity finescale being dominated by near-inertial waves is consistent with the findings of
Kunze etal. (1990) and Sherman and Pinkel (1991). The dominance of the stretching termflbz in
the ertel vorticity indicates that the observed anomalies are very nearly passive and geosLrophic.
This suggests that they were not recently formed by flow separation around Ampere Seamount
since, in the near field, a wake of shed eddies should have a strong dynamic signal; flow separation
at topography has been proposed as a generation mechanism for Arctic eddies (D'Asaro, 1988) and
Meddies (Prater and Sanford, 1990) which have strong dynamic signals. Alternative explanations
include:

* a signature of irreversible processes in the pycnocline.
" an artifact of subduction of surface mixed-layers or injection of benthic boundary

layers from the flanks of Ampere Seamount (Armi, 1978).

As discussed in the introduction, the 60-n wavelengths of the finestructure are too large to be due
to pycnocline turbulence given typical measured microstructure dissipation levels (Mourn and
Osbom, 1986; Gregg, 1987; Gregg, 1989; Yamazaki et al., 1990). They are, however, similar to
typical winte.r mixed-layer depths. Following subduction, vertically stacked mixed layers would
slowly collapse and lose their dynamic signature (Gill, 1981). Dissipative turbulence and mixing
concentrated at the base of the mixed layer would smear any pronounced sheet-and-layer structure,
blending them into the background stratification. Alternatively, Nabatov and Ozmidov (1988)
reported evidence of actively mixing layers in the pycnocline a few Idlometers from Ampere
Seamount. These layers appeared to have been generated by tidal advection of benthic boundary
layers off the summit. While tidal advection would limit the excursion of the layers to within a few
kilometers of the seamount, geostrophic flow like that we observe could carry them further. Emery
(personal communication, 1991) and Roden (personal communication, 1991) have also found
evidence of detached benthic boundary layers at the depth of the summit in the vicinity of Fieberling
Guyot in the North Pacific. While our measurements indicate stretching ertel vorticity finestructure
throughout the pycnocline, we cannot exclude this mechanism yet. We infer that the observed
finestructure is not related to flow separation but is due to injection of mixed layers from either the

.. . 174 .
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surface or benthic boundary. Additional analysis is needed to distinguish between these two
boundary sources.
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Abstract

We investigate the role of potential vorticity in nearly two dimensional flows of

importance in geophysical fluid dynamics. Potential vorticity conservation arises from
particle interchange symmetry in the Lagrangian formulation of fluid dynamics and is

associated with an infinite dimensional symmetry group. In truncating the number of

degrees of freedom of these fluid flows, as one does when making numerical

integrations of the theory, it is not possible to keep the full infinite dimensional
Eymmetry group. We show, in the context of the shallow water equations, how to

modify the symmetry algebra and construct a Hamiltonian for the fluid which
preserves the maximum symmetry consistent with the finite number of retained

degrees of freedom and which becomes the original fluid as the number of degrees of

freedom increases to infinity. The construction is done in planar geometry without

rotation, but it also goes through for f or 0 plane settings, for flows on a sphere

(rotating or not) and for stratified fluids. The latter application includes both

internal and surface gravity waves.

1 Introduction

This is a talk about methods of truncating or restricting the number of dcgrees of freedom

in equations of motion of relevance to geophysical fluid dynamics while preserving the

symmetries leading to conservation laws respected by those evolution equations. In

particular, the symmetry which will concern us here is that of particle relabeling in

1 Institute for Nonlinear Science



Abarbanel and Rouhi

Lagrangian coordinates [Eckart 19601 which leads to conservation of potential vorticity in

either Lagrangian or Eulerian formulations of the theory. The results provide a consistent

mode truncation of the full continuum theory which preserves the invariance of as many of

the conserved quantities of the continuum theory as is consistent with the number of

retained degrees of freedom. Further, as the number of degrees of freedom goes to infinity,

the original continuum theory is recovered and the full set of conserved quantities is

recovered as well. This provides the possibility of reducing the number of degrees of

freedom of a continuum geophysical fluid dynamics flow to a finite number, the only

situation which can be treated numerically, and still preserving the maximum possible

symmetry of the underlying theory.

The methods we present here are Hamiltonian, and the fluid dynamics is cast in

Lagrangian realization. The advantage of this is that the underlying Lagrangian theory is

canonical in the classical mechanics sense and the symmetries of the theory are manifest

and easy to deal with. The correspondirg Eulerian theory is non-canonical and the

symmetries are hidden or "mysterious". The reason for this disguise of the symmetries is

that the Eulerian theory is "reduced" from the Lagrangian formulation by considering the

flow only on hypersurfaces in phase space where the conserved quantities are constant. The

manifestation of these symmetries in terms of conserved quantities seems unnatural in

Eulerian formulation while appearing quite natural in Lagrangian formulatioa.

An outline of this talk is as follows:

9 (1) Lagrangian formulation of the Shallow Water Equations and the Interral Wave

Equations

* (2) Invariance under particle interchange and potential vorticity conservation.

e (3) Truncating the Fourier modes and SU(N) symmetry

- Algebra of Symmetry Generators and Dynamical Variables

- Conserved Quantities

* SU(N) symmetric Hamiltonian, HN; N -* oo leads to usual equations

In the SU(N) symmetric truncated theory there are ;, N conserved quantities. As N --+ cc,

we recover the continuum theory and an infinite number of conserved quantities.
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This talk focuses on the shallow water equations [Pedlosky 1979] because it is for these

that we have concrete results at this time. The shallow water equations are also formulated

on an f-plane, that is Cartesian or flat geometry, in this talk. We know how to extend the

results to flows on the surface of a sphere, but the algebra is difficult and will be reported

elsewhere. In progress is work on extending these results to quasi-two dimensional

geophysical flows including internal waves on a plane ( f or P3) and surface gravity waves.

The reader will see that our methods are generally applicable to flows with a conserved

potential vorticity. If there is driviig and damping also present in the physical setting,

then we can regard the work here as establishing a finite set of coordinates for such

dynamics. When the driving or damping is not significant, then in the coordinates we

present the required conservation laws are respected automatically. In that sense they

provide a rational choice of truncated modes for all numerical work on geophysical

problems where quasi-two dimensionality is a feature.

Our motivation for concentiating on potential vorticity modes is two fold:

e The work of Maller and co-workers [Maller 1988a, Mfiller 1988b] has provided

evidence for the geophysical importance of potential vorticity carrying motions even

at small scales.

* Conserved quantities are always important for constraining the allowed physical

motions of a system and for checking numerical integrations of those equations of

motion.

2 Lagrangian Fluids

In the description of fluids by the Lagrangian method [Abarbanel 1987] we are required to

give the position of a fluid particle y(r, t) and its canonical momentum p(r, t) for each

particle label r, which is a two or three dimensional continuum of labels for particles. The

evolution equations of these variables follows from an Action Principle which is really just

Hamilton's Principle. This states that the action S in d-dimensions:

t2 1 0y(r,t) ay(r t)(')=f:dt d r po'r)2 "Ot (P ) 1

is stationary under changes of y(r, t) near the orbit of the system. Here the internal energy

density c(p, s) is a thermodynamic quantity from which the pressure is derived. It is a
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function of the density and the specific entropy. In this expression for the action all partial

derivatives with respect to time are with r held fixed. The density p(y) is

0(r)
p(y(r,t)) = po(r) (rt))' (2)

and s = s(r) is the entropy per unit volume. Varying S with respect to y(r, t) with r and t

fixed leads to the equations of motion

, a
2y(r, t) _P 8) b - =-Vp(y,t),

MY 0 y(r, t)
ap(y,t) -p(y)Vy • (at)

Ott

s 0,
at
p = 2 .  (3)

To reach the Eulerian formulation of fluid dynamics we identify a fixed point in space x

with the location y(r, t) of a particular fluid particle at time t. This defines a particular

label R(x, t) which identifies the fluid particle which arrives at x at the appointed time, so

x = y(R(x, t), t), (4)

and the Eulerian velocity UE(X, t) is defined as

UE(X,t) = Oy(r,t)(
Ot r=R(x,)" (5)

The Lagrangian derivative at fixed label r becomes

Ir 1x + UE(X,t) VX. (6)

The Eulerian formulation at fixed spatial points x is a reduced description of the fluid

theory [Marsden 1984] since it describes flows restricted to surfaces in the fluid state space

which have constant values of the conserved potential vorticity. Lagrangian fluid dynamics

describes the evolution of szx fields: the canonical coordinates y(r, t) and their canonical

momenta p(r, t). Eulerian fluid dynamics describes the evolution of five fields:

uE(x, t), p(x, t), and the specific entropy s(x, t). This reduction in number can be traced to

the restriction of the flows to motion on constant potential vorticity surfaces, and that

brings us to potential vorticity and its interpretation.
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In this talk we consider the shallow water equations as our paradigm for a nearly two

dimensional fluid with a conserved quantity. We wish to truncate to a finite number the

continuum degrees of freedom of the fluid and to do so in a fashion which preserves a

subset of the symmetry leading to potential vorticity conservation The truncated theory

must become the correct continuum theory as the number of modes goes to infinity.

The shallow water equations result from stationarity of the action

ft 2 1l Oy(rt) ay(r,t) g (

d r hr){ 2  at Ot 2J}'  (7)

with J = a(r) - One can absorb the initial "height" ho(r) into the definition of the labels

f d2rho(r) -4 f d2r without any loss of generality, and we do that to simplify our formulae.

The canonical momentum is defined in the usual way as the derivative of the Lagrangian

S = f112 dt f d'rL[y(r, t), aty(r, t)] with respect to aty(r, t), so p(r, t) = Oty(r, t). The

shallow water Hamiltonian is then

H(y, p) = J d2r [Ip(r, t)12 + E], (8)

and the equations of motion follow from the Poisson bracket relation

a.(9
= {H, (y,p), (9)

using the fundamental Poisson bracket

{y.(r, t), pb(r', t)} = 6bS 2 (r - r'). (10)

Under particle interchanges which preserve the density (or ho(r) here) the action is

invariant. This is formally expressed by requiring that 6rS = 0 with y(r, t) and density

held fixed, and was pointed out first by Eckart in 1960 [Eckart 1960]. The conserved

quantity which results from this symmetry of the action is the potential vorticity

= cay(r, t) op.(r, t)q~r, t),, ar- r---b--

and
aq(r,t)

at 0. (12)

Translating this into Eulerian variables using the prescription given above results in
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q. (x, t) = ' Vx x uV(x, t)
hE(x,t) (13)

and
0

+ uE' Vx)qE(x, t) = 0. (14)

hE(x, t) is the usual Eulerian fluid thickness in shallow water theory and comes from the

Lagrangian quantity h(r, t) = '

These conservation laws lead to the statements that for arbitrary functions G

1 f d2r G(q(r, t)) = 0, (15)

and
af d xhE(x, t)G(qE(x,t)) = 0. 

(16)

These are an infinite number of conserved quantities associated with the local particle

interchange symmetry. Next we examine the algebra associated with this symmetry noting

it is q(r, t) which is the infinitesimal generator of the symmetry.

Before delving into the algebra let us make the connection with internal wave dynamics.

For internal waves the flows are three dimensional and the Hamiltonian is

H(yp) = J dr{I 2p. +p09y3(r, t) + poc(p)1, (17)

where A is the rotational potential whose curl is if(r), and the initial density po(r3) is

taken to depend on the vertical coordinate only. The quantity conserved under particle

interchange for this theory is

3{Dy, (r, t) a 10y ,(r, t)q(rt) = EI= ar) I _ _ + lR(y).] - (r, +-+ r 2 )}, (18)

Cf=l 1  r2  at

or in Eulerian variables

qE(xt) = (if + V x UL)" Vp. (19)

3 Algebra of Particle Interchange Symmetry

To exhibit the algebra associated with the particle interchange symmetry of the shallow

water equations, it is easier to go from configuration space r to Fourier
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space [Abarbanel 1991]. For this we place the configuration space in a box of size L x L

and define Fourier transforms via

+00

f(r) = E F(n)exp[irn r],n=-oo

F(n) = I d2rf(r) exp[-irn • r]. (20)
L2

Here the vector n = [ni,n 2] with ni are integers ni = 0,±1,:±2,,... ,±oo, and ir L

With this Fourier transform pair we define Y(n, t) and P(n, t) as

1 +00
y.(r,t) = E Y(n,t)exp[ixn.r],

1=-oo

1+00
pa(r,t) = E P(n,t)exp[iin.r], (21)

Ln=-oo

with the normalization chosen so the fundamental Poisson bracket becomes

{Y(n, t), Pp(m, t)} = 6ko 6o,m+n .  (22)

The Fourier components of the potential vorticity are taken as

q(r, t) = E n Q(n, t) exp[inn . r], (23)

which leads to

Q(n,t) = > m' x mPa(m)Qa(m')6nm+m,, (24)
mm'

where m' x m = m'Im 2 - m'2mI is the z component of the cross product among vectors.

With these definitions of Fourier components we can easily evaluate the Poisson brackets of

the Q(n) which are the generators of the local particle interchange symmetry with the

Y(n), the P(n), and themselves. This leads to

{Q(n), Y (m)} = n x m Y,(m + n),

{Q(n),Pn(m)} = n x rnP,(m+n),

{Q(n),Q(m)} = n x mQ(m + n), (25)

so the algebra of the Q(n) closes, as it must if we have a symmetry, and the Fourier

components of the y and the p transform under the algebra as "vectors". The factors of
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m x n are the structure constants of the group of particle interchange symmetry.

Perhaps a more familiar example of this kind of algebra is that of three dimensional

angular momentum in classical mechanics. The angular momentum L = q x p or

La = 6bcqbpc; a, b = 1,2, 3 has the following Poisson brackets with the coordinates q, the

momenta p, and L which follow from the fundamental bracket {q, Pb} = bab:

{La,qb} = Cabcq,

{LaPb} = CabcPc,

{La, Lb} = 6obcLo. (26)

Any quantity which satisfies {L,, Vb} = fabcVc is a vector under three dimensional rotations

which are generated by L. The dot product v . v is unchanged under rotations since

{La,V . v} = 0, and L. L is the invariant of the algebra of the rotation group. Rotational

invariance of the dynamics of a system is guaranteed by having an Hamiltonian H(p, q)

which satisfies

{La, H(p,q)} =0. (27)

This also leads to the conservation (under evolution in time under H(p, q)) of L2 = L. L

and any function of L2.

A critical aspect of the angular momentum algebra which we must establish for our particle

interchange algebra is that the Poisson brackets satisfy the Jacobi identity
{L., {Lb, L,:} + {Lb, LLcL} +{L,{LaLb} = 0, (28)

for this guarantees that a combination of rotations is also a rotation and that under

evolution through a finite time under H(p, q) angular momentum is conserved.

Now we return to the shallow water equations. The final ingredient we require for

constructing the truncated Hamiltonian for shallow water flow is the Fourier decomposition

of the Jacobian and the transformation properties of these Fourier coefficients under

particle interchange. This decomposition is easily established to be

_O(y(r, t))

_(21r)2
-L4 )2 p(n,t)exp[in 

.,],
n

p(n) = E (mI' x m)Y(m) x Y(m') n,m+m', (29)
mm'
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from which

{Q(n),p(m)} = n x mp(m + n) (30)

follows. So the Fourier components of the Jacobian are also vectors under the

transformations generated by the Fourier components of potential vorticity.

Just as with the three dimensional angular momentum example above, the Jacobi identity

among the Q(n) is critical in guaranteeing that finite particle interchange transformations

such as are generated by finite time evolution under the shallow water Hamiltonian lead to

potential vorticity conservation.

Before displaying our truncated shallow water theory we recall how the potential vorticity

Q(n, t) is conserved in the case with an infinite number of Fourier components. For this we

need to compute the Poisson bracket of Q(n, t) with the Hamiltonian

1 +00 g l
H= Z P,(n)P(-n) + J d2r'

n=-(Oo

The Poisson bracket with the first term in II is up to a factor of 2

S(' x m) P(m) . P(m')6n,m+m,, (32)

which vanishes because of symmetry in the m, m' sum. The Poisson bracket with the

second term is (up to a constant factor)

1 Id 2 r O(exp[-itzn r],J-' )  (33)
-2 0(r) '

which vanishes by integration by parts. In a mode truncated theory the first part of this

will remain: the kinetic energy will still Poisson commute with potential vorticity, but

integration by parts will be absent since we will no longer have a continuum theory in label

space.

4 Truncating the Number of Modes; a New
Potential Vorticity Algebra

Now we restrict the number of Fourier modes allowed to the variables Y(n, t) and P(n, t)

by keeping the Fourier sums in the bounds -M < n, < M for i = 1,2. We now have N2

degrees of freedom where N = 2M + 1. The fundamental Poisson bracket among the Y(n)
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and the P(n) is unchanged except the rule is to keep all Fourier indices within [-M, M], so

when n + m appears it is to be so restricted. The problem comes when we go to the

Poisson brackets of the potential vorticity Q(n) with the coordinates or the canonical

momenta or the Fourier components of the Jacobian or with itself. In this we encounter

the cross product -.' x n which is the structure constant for the group action of Q(n) in the

Euclidian space of Fourier indices. By our truncation of modes we have changed the space

of Fourier modes from the plane to that uf a two dimensional torus; this is because we have

introduced an effective periodicity in Fourier labels. To match this and preserve the Jacobi

identities we replace m x n by

1
n x m - -sin[rN(n x m)], (34)

KN

where KN = 7" Clearly as N -* oo this reduces back to the Euclidian space version n x m.

For finite N, which is our concern here, we have an effective periodicity in Fourier space

now respected by the new structure constants. What is truly remarkable, however, is that

this simple replacement of m x n also respects the Jacobi identity so a group structure is

retained [Hoppe 1989].

With these new structure constants we can write the Fourier decomposition of the

potential vorticity

Ml
QN(n) = - Z sin[KN(n x m)lP(m) Y(n - m), (35)

KN m=-M

and for the Jacobian Fourier components, we write

1 M
pN(n) = - i sin[KN(n x m)]Y1(m)Y2(n - m). (36)

KN m=-M

The Poisson brackets of this new QN(n) with any of Y(n), P(n), pN(n) or Q(n) takes the

form
{QN(n), f(m)) = sin[KN(m x n)] f(m + n), (37)

KN

with f(m) any component of the canonical coordinates or canonical momentum or pN(m)

or QN(m). This set of Poisson brackets now defines a finite algebra of particle interchange

transformations generated by the QN(n). It also defines anything which transform as f(m)

here as a vector under this new transformation group. The group structure is guaranteed

by satisfying the Jacobi identity, the demonstration of which is a tedious task left to the
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dedicated reader. Our job now is to establish a Hamiltonian HN (Y, P) in these truncated

variables which Poisson commutes with QN(n) and becomes just the shallow water

Hamiltonian as N -+ co. The easiest method is to seek invariants of the finite particle

interchange algebra (it happens to be SU(N)) and construct HN out of them.

4.1 Invariants of the Truncated Algebra

The idea is to use the transformation properties of vectors f(m) under the QN(n) algebra

{QN(n), f(m)} = sin [tN(m x n)] f(m + n), (38)
KN

to form "dot products" Cp(f) such that

{ QN(n), Cp(f)} = 0. (39)

The Cp(f) made out of powers of f(m) are

M

C2(f) = E f(m)f(m')6om+m,
m,m'=-M

C3(f) = E f(nl)f(n2)f(n)6o,n,+n,+n3 exp[iKN(nl x n2 + ni X n3 + n2 x n3 )]
nln 2,n3

CL+I(f) = Z I- exp~iKN(ncxna1f(ni)f(n 2)...f(nL)f(-(nl + n2 +... nL)). (40)

nl ...fnL a<o

So these are generalized "powers of vectors".

The kinetic energy term in the truncated Hamiltonian
1 Ml

KEN = IM P(n).P(-n), (41)
2fl=-m

is just C2(P) up to a constant. The term involving I requires some thought., The idea is to

express . as a power series around some finite value Jo and then truncate the sum with N

terms. Then we replace each of the integrals of o by Cp(pN) up to constants. The natvral

value of J0 is unity since for small displacements Y(r, t) = r + small terms, and for

Y = r, J = 1. For general Jo we write



Abarbanel and Rouhi

1 1

J -Jo -(Jo - J)
= 00 1

k=0

N '-1

k=O

0 - 01- )N), (42)

which is very nearly when 0 < J < 2J) and N is large.

In the expression for the potential energy in HN involving f d2riy we make this replacement

for J-1 and specifically set

f d' r d P+l  (202+ p+I(PN), (3

so our truncated Hamiltonian is

i PM n 9 N (2 1r)2k-2
HN 2 = P(n)'- P(-n) +- E CkNi2(2k-2) (pN).

"n=-f M =1

This Hamiltonian, by construction, has zero Poisson bracket with QN(n). Further

{C,(QN), HN) = 0 as well.

This constitutes our mode truncated shallow water Hamiltonian and is an explicitly SU(N)

symmetric approximation to the continuum shallow water theory from which we started.

As the number of modes goes to infinity, the continuum theory is recovered in all its

details. For finite N, the symmetry constraints of particle interchange are respected as

accurately as possible.

5 Conclusions

In this talk we have presented insight into the origins of potential vorticity conservation

and in doing so have investigated the algebra of infinitesimal operations associated with

the particle interchange symmetry responsible for that conservation law. The generators of

local infinitesimal particle interchanges are the potential vorticity at a point, and in the

continuum theory their Poisson bracket algebra is infinite dimensional.

We then showed how to truncate the modes of the shallow water theory, expressed in

Fourier space of its Lagrangian representation, and to alter the symmetry algebra so it
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iemains a symmetry algebra of the finite degree of freedom theory. In the planar geometry

where we worked, this replacement was straightforward.

In the future we shall address several questions:

the application and numerical investigation of this kind of truncation to inviscid two

dimensional incompressible flow. This simplest of all theories of fluid flow has only

one Eulerian dynamical field which can be taken to be the vorticity out of the plane

of flow, and the algebra of this variable in Eulerian representation parallels that

discussed here for the potential vorticity.

* the extension of the construction presented here to two dimensional flow on a sphere

(rotating, if you like).

* the extension of these ideas to planar and spherical stratified flow for the study of

internal waves and surface waves.

9 the numerical investigation of these symmetric finite degree of freedom systems to

understand the role played by the symmetry constraints.

* investigation of the "statistical mechanics" of these symmetric Hamilton systems and

of the paths to chaos in the systems.

Another avenue of substantial interest is to understand the Eulerian version of our

Lagrangian formulations of these symmetric theories. This is both for general interest and

since the numerical investigation of the symmetry preserving mode truncated theories may

well be easier in Eulerian variables.

Finally, since damping and driving are physical ingredients of any real observations of the

ocean, we expect that these inviscid or Hamiltonian discussions will serve as means for

identifying variables in which to investigate both the inviscid and the dissipative physical

settings. The advantage of the variables thus suggested is that when length scales and time

scales are large enough that viscosity is unimportant, all conservation laws one would want

to be respected are respected.
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WEAK WAVE AND VORTEX INTERACTIONS
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ABSTRACT

We report on theoretical analysis and direct numerical simulations of internal
wave and vortical mode interactions in stably stratified fluids. Utilizing multiple-
time-scale perturbation analysis, a resonant interaction is found between a vor-
tical mode and two internal waves in which the vortical mode plays the role of a
catalyst. This interaction could cause significant modification of the internal wave
field. Vortical mode self-interactions are found to be strongly nonlinear, and can
be a significant source of internal waves. The numerical simulations indicate that
the theoretical analysis is valid for the small parameter (Froude number) of order
one or less. Furthermore, in each case computed in this range of Froude number,
the vortical mode exhibited strong instabilities, transferring energy to larger hori-
zontal scales.

1. INTRODUCTION

The traditional view of oceanographic flows at higher frequencies (between
the local Coriolis and buoyancy frequencies) and smaller scales (between tens o:,
meters up to about tens of kilometers) is that these flows mainly consist of iner-
tial gravity waves. Laboratory visualizations have indicated, however, that quasi-
horizontal meandering motions often exist superimposed upon an internal wave
field. Such flows have been observed, e. g., in the later stages of decay of a turbu-
lent wake (Lin and Pao, 1979), in the later stages of grid turbulence (Liu, 1980),
and in the long-time behavior of a short duration jet (van Heijst and Fl6r, 1989)
when such experiments are carried out in a stably stratified fluid.

In an attempt to explain the laboratory results and also some numerical
simulation data, Riley et al. (1981) have suggested that the presence of quasi-
horizontal structures, which have been termed vortical modes (Miiller et al.,

tPresent address: National Center for Atmospheric Research, Boulder, CO 80302
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1986), is due to the domination of the flow by stable density stratification. In-
troducing a Froude number defined by F = u'/NL, where u' is an rms velocity,
N is the buoyancy frequency, and L is an integral scale (characterizing the larger-
scale structure), they argued that the vortical modes appear when F becomes
small, i. e., when the influence of stratification becomes strong. Furthermore, they
offered scaling arguments to explain why the flow should consist of both vorti-
cal modes and internal waves when F becomes small, and gave a mathematical
decomposition of the velocity field into wave and vortical mode components. Sub-
sequently Lilly (1983) extended these ideas to large-scale geophysical flows (with
rotation), in which case the small parameter is a Rossby number. Lilly suggested
that vortical modes might explain recent atmospheric spectral data (Gage, 1979)
at intermediate scales. Mfiller (1988; see also Miiller et al., 1988) has proposed
that vortical modes explain the vertical fine-structure observed in the ocean inter-
nal wave field.

At the present time, little is known about the properties of vortical modes
at the internal wave scales, for example, the vortical mode energy levels, spec-
tral distributions, dynamical interactions, sources of energy, and sinks of energy.
The goal of the work presented here is to elucidate the dynamic interactions of
the vortical modes, and in particular: (i) to identify the principal interactions
which affect vortical modes; (ii) to determine how weakly nonlinear theory must
be modified to take into account these interactions; and (iii) to test the resulting
theoretical predictions by comparison with results from direct numerical simula-
tions of the fundamental equations of motion.

There are two key points upon which this theory rests. The first is that a
small parameter exists. This is an assumption implicit in any wave theory, and
implies that, in some sense, the nonlinearities are sufficiently weak that the math-
enatical concept of a wave is useful. This small parameter can be taken to be, for
example, the ratio of the wave period to an advective time. For higher frequency
motions this ratio is a Froude number, as utilized by Riley et al. (1981), whereas
for lower frequency motions it is a Rossby number (Lilly, 1983).

The second point upon which the theory rests is the use of Ertel's potential
vorticity in the decomposition of the flow fields (MUller et al., 1986). We define
the internal wave field to be that part of the flow which does not contribute to
the potential vorticity, and the vortical mode field to be that part of the flow
which accounts for all of the potential vorticity. A principal rationale for using
potential vorticity in the decomposition is that, as a dynamic quantity conserved
following the motion in the absence of molecular diffusion, it cannot be associ-
ated with wave propagation. This decomposition reduces to that obtained when
the governing equations are linearized (Miuller et al., 1986), and Staquet and Ri-
ley (1989) have shown that this decomposition can be usefully extended to weakly
nonlinear flows. It should be noted that, with this definition, the vortical mode
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is the same as what is termed 'stratified turbulence' at intermediate atmospheric
scales (Lilly, 1983), and the 'slow quasi-manifold' or the solution to the 'balanced
equations' (McIntyre and Norton, 1991) at planetary scales. Furthermore Lilly
(1983) has demonstrated that, at intermediate scales, the vortical mode satisfies
the (nonlinear) geostrophic turbulence equations to lowest order.

In an effort to understand the vortical mode dynamics and their interaction
with the internal wave field, we have recently examined the nonlinear interaction
of simple monochromatic internal waves and vortical modes, in particular address-
ing wave-wave, wave-vortical mode, and vortical mode-vortical mode interactions
(Lelong and Riley, 1991). In the next section, we briefly review the theory of Le-
long and Riley and discuss their principal results. In the third section, results of
direct numerical simulations of wave-vortical mode interactions are presented and
compared with theory. In addition, simulations are presented for initial conditions
consisting only of vortical modes. The behavior of the resulting flows is examined,
and the results compared to the scaling analysis suggested by the theory. In the
final section, the results are summarized and discussed.

2. RESULTS FROM PERTURBATION ANALYSIS

As mentioned in the previous section, vortical modes are visually observed
in laboratory experiments when the Froude number based upon the energy con-
taining range, i. e., F = u'/NL, is small. This Froude number can be interpreted
as the ratio of two time scales: N- 1, the buoyancy period, and L/u', an advec-
tive time scale. In the experiments, the buoyancy period has thus become small
compared to the advection time. F being small is also the usual requirement for
linear or weakly nonlinear internal wave theory to be valid.

This suggests the use of multiple time scale perturbation analysis to analyze
the dynamics of the internal waves and vortical modes. Lelong and Riley (1991)
have carried out such an analysis, and begin by writing the velocity field i(7%, t) in
the form, as suggested by Lilly (1983):

u= V A orz+ VH + wF,. 1

[Note that this analysis has also been extended to rotating flows (Lelong, 1989)
by starting with the decomposition suggested by Mfiller et al. (1986), which is an
extension of the above expression to include the effects of rotation.] Here the sub-
script H denotes the horizontal component. To lowest order the stream function
0 (and an associated density field) completely determine the vortical mode, while
the vertical velocity w (or 4, where w = - f V2q dz) specifies the internal wave
field. When these expressions are substitutcd into the Navier-Stokes equations
subject to the Boussinesq approximation, an equation for 0, namely the vertical
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vorticity equation, is obtained while an equation for w results from manipulation
of the vertical and horizontal momentum equations. In addition, the equation for
the buoyancy is required.

Velocities are nondimensionalized by u', lengths by L, and time by N-'.
(It is assumed that N is uniform in space.) All nondimensionalized dependent
variables are expanded in power series of F, and terms of like powers of F are
equated. Furthermore, a 'fast' time of the order of the buoyancy period and a
'slow' time of the order of the advective time are now both treated as indepen-
dent variables. To lowest order (on the short time scale N ), linear theory is re-
covered. On this time scale, the vortical modes are steady. The equations at the
next order give an O(F2 ) correction to these solutions unless a resonance exists,
in which case the form of the lowest order solutions has to be reassessed in order
for the series expansion to remain valid. The elimination of secular terms from
the second order equations yields the evolution of the solutions on the slow, ad-
vective time scale. The results depend on the specific problem considered, i. e., on
the initial conditions. (Note that when this analysis is extended to the case with
rotation, the small parameter is a Rossby number, and the theory proceeds in an
analogous manner.)

Wave-Wave Interactions

For this case, the initial conditions are taken to be two linear internal waves
and a linear vortical mode. The internal waves are arbitrarily oriented, while
the vortical mode is assumed to be harmonic in space and is given in terms of a
stream function as in Equation (1) above. The results of the analysis are an ex-
tension of resonant wave interaction theory in the presence of a vortical mode,
and also the application of resonance theory to triads which are out of the ver-
tical plane. Wave resonant triads are unaffected by the presence of the vortical
mode, unless there exists a wave-vortical mode resonance (see the next subsec-
tion below). Furthermore, resonant triad analysis is readily extended to wave tri-
ads not lying in a vertical plane. The only deviation from the vertical plane case
is that the gravity vector is effectively reduced by the cosine of the angle of the
triad-containing plane witli respect to the vertical.

The initial wave fields, b;teing solutions to the linear wave equations, possess
no potential vorticity. Since potential vorticity would be expected to be conserved
for these weak wave interactions, the potential vorticity should remain zero. From
the decomposition of the flow field discussed in the Introduction, no vortical mode
would be expected to be generated. One key result of this theory, however, is
that, for interactions out of a vertical plane, linearized potential vorticity can be
produced at higher orders. This can lead to the erroneous conclusion that wave-
wave interactions can be a source of vortical mode energy (e. g., Dong and Yeh,
1988). Potential vorticity is, however, exactly conserved at each order by such in-
teractions so that no vortical mode energy is generated by such an interaction.
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Another important related point is that, although resonances out of the vertical
plane are as likely to occur as in-plane resonances, it is not clear that any of the
present theories [e. g., McComas and Bretherton (1977)] include such interactions.

Wave-Vortical Mode Interactions

In this case the initial conditions consist of one internal wave (with wave
number vector 1 and frequency w) and one vortical mode (with wave number
vector -2). The analysis predicts that a resonance can occur with a second inter-
nal wave (with wave number vector Ka) of the same frequency if the wave num-
bers satisfy

KI ± K 2 ± K 3 = 0. (2)

The wave number vectors of the internal waves lie on a vertical cone whose sur-
face is at angle 0 = cos -1 w. (See Figure 1.) Note that this interaction could act
to redistribute energy broadly in wave number space.

The nonlinear amplitude equations for this case can be solved analytically,
and it is found that the role of the vortical mode is catalytic, i. e., it is needed
for the interaction to occur, but it does not actively participate in the energy ex-
change. (This mechanism is reminiscent of the elastic scattering interaction dis-
covered by Phillips, 1968, although the dynamics for the present case are signifi-
cantly different.) The two wave modes exchange energy harmonically on the slow
time scale, the vertical velocity being given by

w = cos(rFt) sin( i . - wt) - sin(1RFt) cos(R 3 .- wt). (3)

Here 2r/PF is the interaction period, where F is given by

r = B K3 s 0 s 2 0 sinn2 (4)2 {cos 2 0cos/A7 + sin 2 0}.(4

The parameter B is the amplitude of the vortical mode and A-y is the angle be-
tween the horizontal components of the wave number vectors of the two waves.
Note that this same resonance exists in the case with rotation (Lelong, 1989).

Vortical Mode Interactions

In this final case, initial conditions consisting of two vortical modes have
been considered. It is found that all interactions are resonant because the reso-
nance condition imposed on the frequencies is identically satisfied, the frequency
of any vortical mode being zero regardless of its wavenumber. As a consequence,
the vortical mode equations are fully nonlinear on the vortical mode time scale
(L/u'). It is found that, to lowest order, the vortical mode velocity, pressure, and
density satisfy:
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UH + itH .ViZH -Vp + R-V 2 UH (5a)

V .U H = 0 (5b)

Op 0= -~ -p(5c)

0 /

_C3

Figure 1. Wave/vortical mode resonant triad.

Here R = u'L/v is the Reynolds number. Note that these equations describe hor-
izontal motion in each horizontal plane, but with vertical variation retained. This
result was suggested by Riley et al. (1981) using heuristic arguments. In addition
to the conclusion that the vortical modes satisfy Equation (5), it was found that
the vortical modes excite internal waves at higher order, with the amplitude of
the internal waves scaling as F (or the energy as F2 ). Note that, with rotation,
the lowest order equations are equivalent to the (nonlinear) geostrophic turbu-
lence equations (Lilly, 1983).
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3. SIMULATION RESULTS

In this section we present results of direct numerical simulations and com-
parisons with theory for both wave-vortical ruiode interactions and vortical mode
self-interactions. The simulations employ pseudo-spectral numerical methods with
leap-frog time-stepping (smoothed every 25 time steps). The wave-vortical mode
simulations were performed on 32 x 32 x 32 point computational grids, while the
vortical mode interactions used 64 x 64 x 64 point grids. All calculations were
performed on an Ardent Titan Mini-Supercomputer Server.

Wave-Vortical Mode Interactions

As discussed in the previous section, a resonance was found to exist between
a vortical mode and two internal waves if the two waves are of the same frequency
and the three wave number vectors form a triangle on the surface of a vertically-
oriented cone. In order to examine these interactions we have performed direct
numerical simulations for a number of different resonance conditions, and for a
variety of different Froude numbers. The following case is typical of the results
from these simulations, and represents the interaction of an internal wave with a
horizontally shearing current. The latter is a special case of a vortical mode. The
initial vertical velocity of the internal wave satisfies

w (i,O) = cos(K-. - ) ,

while the vortical mode is initially given by

iZ(F, 0) = (K 22 Bsin(- 2 -X), - 2 ,B Sil(iZ2 - X), )

We choose
= (2,0,2),

giving a wave propagating at 450 to the horizontal. The vortical mode wave num-
ber is

- 2 = (-2,2,0),

giving a horizontal current uniform in X3 , but which is sinusoidal in the horizontal
with wave number magnitude I 21 = 2v. Based upon the resonance conditions
[Equation (2)], the resonant wave should be found at

K3 = (0,2,2).
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The parameter B is taken to be 2.0, and the Froude number F to be 0.02. From
the scaling analysis, this implies that the wave frequency w in the simulations is
27r/F, while the interaction frequency r is 2.0. The perturbation theory indi-
cates that both the kinetic and the potential energy in the initial internal wave
(gt) should vary with time as 0.5cos2 (2t), and that in the forced wave (-3) as
0.5 sin2 (2t).

Figure 2 contains a plot of the potential energy at the forced wave number
rv3 versus 'ime taken from the simulations. Also plotted is the theoretical pre-
diction. We see that the simulations follow the theory fairly closely for a time of
about 2 to 2.5, at which point the potential energy in this wave mode begins to
oscillate (near the buoyancy frequency), and the results begin to deviate signifi-
cantly from the theory. More insight into this problem is given by examining the
kinetic energy of each mode for this case, as shown in Figure 3. According to the
theory, the kinetic energy in the vortical mode should remain uniform in time.
Again we see that the simulation results follow the predicted oscillation in the
wave kinetic energy up to a time of about 2 to 2.5, at which point the computed
solutions rapidly diverge from the theoretical predictions. Furthermore, the ki-
netic energy in the vortical mode remains approximately constant up to this time,
and it then begins to exhibit a large deviation from its initial value.

0.8

0.6.

- Numerical
0.4- ............ The"r

0

0.2-

0.0
0.0 1.0 2.0 3.0 4.0

Time

Figu,- 2. Potential energy in the forced wave W3; Ft = 0.02.
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Figure 3. Kinetic energy in all three modes; Ft = 0.02.

Visual analysis of the results of this case determined that the horizontally
shearing motion was subject to a shear instability which arose dramatically at
about a time of 2. Furthermore this instability transferred energy mainly into the
vortical mode components at wave numbers -1 and '3. Prior to this instability,

however, the perturbation theory gave accurate predictions of the interactions.
Vortical Mode Interactions

In order to examine nonlinear vortical mode interactions we have considered
initial conditions consisting of a sum of spatially harmonic vortical modes. The
initial velocity field is given by

i_(i,0) = cos x3 (cos XI sin X2 ,-sinx, cosX 2 ,0), (6)

while the initial perturbation density field is identically zero. For the nonstrat-
ified case this initial condition defines the Taylor-Green problem (Taylor and
Green, 1937), with the velocity field oriented such that it is initially horizontal.
This problem has received much attention in the literature (e. g., Orszag, 1971).
The perturbation analysis predicts that as F -4 0, the flow field should satisfy
Equation (5) to lowest order. The exact solution to these equations, satisfying the
above initial conditions, is

d(:F, 0) = e( -3R - ' )cosX 3(cos X Isinx 2 , -sinx, cosX2 ,0). (7)
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The nonlinear terms in the momentum equation [Equation (5a)] are exactly bal-
anced by the pessure gradient, so that the equations become linear. The stream-
line pattern remains independent of time as the velocity field decays due to vis-
cosity. This solution is an extension of a well-known solution for the two-dimen-
sional Taylor-Green problem (see, e. g., Staquet, 1985).

We performed a series of simulations for a number of different Froude num-
bers, using the above initial conditions for each case. For all the cases presented
the initial Reynolds number R was Aixed at 200. Figure 4 gives a plot of the vol-
ime integrated kinetic energy of the horizontal velocity (normalized by its initial
value) for these different cases. The case with F = o corresponds to the Taylor-
Green problem, and agrees with previously published simulation results. We see
that increasing the stratification decreases the decay rate, as might be expected.

1.2

1.0

>- F -oo

e- F, =16
0.6 F,4

C F F,=2

0.2F

0.0

0 2 4 6 0 10 12

Time

Figure 4. Taylor-Green problem: normalized kir.tic energy of horizontal velocity
for various Froude numbers.

Furthermore as F becomes small, roughly F < 1.0, the computed solutions coin-
cide, as expected from the perturbation theory. Figure 5 gives a plot of the same
data on an expanded scale, for the cases with stronger stratification. Also plotted
is the result from the theoretical solution, Equation (7). We see that the solution
to the predicted asymptotic equations agrees very well with the simulation results
for F < 1.0.

Figure 6 contains plots of the wave energy for these same cases. The wave
energy contains the potential energy plu the wave part of the kinetic energy, as
defined by Equation (1). Note that the wave energy decreases significantly as F is
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Figure 5. Taylor-Green problem: normalized kinetic energy of horizontal velocity

for several Froude numbers: expanded scale.

decreased. When these results are replotted, scaled with F - , as suggested by the
theory, then the wave energy collapses well for F < 4.0 (Figure 7). Therefore, for
F < 1.0, the perturbation analysis is consistent with the results for both the hor-
izontal kinetic energy, which consists mainly of the vortical mode, and the wave
energy.

This present case is somewhat degenerate because, as F becomes small, the
nonlinear and horizontal pressure gradient terms come into balance, leading to
the simple viscous decay given by Equation (7). As mentioned, this is similar to
the result for the two-dimensional Taylor-Green problem. It is well-known for the
two-dimensional problem, however, that the solution is unstable to subharmonic
perturbations. The length scales of the flow continually grow larger as energy is
nonlinearly transferred to lower wave numbers. Therefore we also performed a
series of simulations for different F using the above initial conditions, Equation
(6), but with white noise added. Figure 8 gives a sequence of constant contours
of 0 in a horizontal plane for the case F = 1.0. At this value of stratification
these contours approximate streamlines in a horizontal plane. We see that the
flow develops nonlinearly in time, as energy is continually transferred to larger
scales, reminiscent of the two-dimensional problem. Figure 9 contains plots of ¢
in two different horizontal planes at a later time. We see that the two layers have
become decoupled, the flow in the two planes being very different. Finally, Fig-
ure 10 has plots of the total energy versus time for the different cases computed.
Again the results converge for F < 1.0, consistent with the predictions of the per-
turbation theory.
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Figure 6. Taylor-Green problem with white noise: wave energy for three different
Froude numbers.
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Figure 7. Wave energy scaled by 1/JQt for three different Froude numbers.
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Figure 8. Sequence of constant contours of the stream function in a horizontal
lplane for Ft = 0.2 at T=O, T=5, T=10, and T=15.

4. CONCLUSIONS AND DISCUSSION

We have reported on theoretical analysis and direct numerical simulations of
internal wave and vortical mode interactions in strongly stratified flows. The the-
oretical work utilizes multiple-scale expansions assuming the existence of a small
parameter (e. g., the Froude number). Furthermore, a decomposition of the flow
field into internal waves and vortical modes that is based upon Ertel's potential
vorticity is employed. The objectives are: (i) to identify the principal interactions
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Figure 9. Constant contours of the stream function in two different horizontal
planes for Ft = 0.2 at T=15.

which affect vortical modes ; (ii) to determine how weakly nonlinear theory must
be modified to take into account these interactions; and (iii) to test the resulting
theoretical predictions by comparisons with results of direct numerical simulations
of the fundamental equations of motion.

Wave-wave interactions are considered theoretically, and previous results
on wave resonance are reproduced. Resonances out of the vertical plane are also
found, and an apparently erroneous conclusion regarding the excitation of vortical
modes by internal wave interactions is explained. Another interaction examined
is the resonance of two internal waves and a vortical mode. In this interaction the
vortical mode plays the role of a catalyst, not exchanging energy with the wax cs,
but being necessary for the interaction to occur. This interaction could have a
significant effect on the development of an internal wave field. By comparing the-
oretical results with those from direct numerical simulations, we have found that
the perturbation analysis predicts the interactions very well if the Froude number
is small enough, approximately F < 1.0. From the numerical simulations we have
also found, however, that the vortical modes considered were highly unstable, and
ultimately experienced breakdown as the fluctuations in the flow increased. In all
cases considered for this interaction the vortical mode consisted at least partially
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Figure 10. Taylor-Green problem: total energy for several Froude numbers.

of horizontally varying currents with multiple inflection points. These flows sat-
isfy both Rayleigh's and Fjortoft's necessary conditions for instability (Drazin and
Reid, 1981). Thus, it is not surprising that they were unstable. The instabilities
appear to feed energy into the vortical modes at the same wave number as the in-
ternal waves. Once the unstable fluctuations grew to an appreciable amplitude,
then the results of the simulations deviated strongly from the perturbation theory
predictions.

Vortical mode self-interactions are also considered, and it is found that the
lowest order governing equations are fully nonlinear. As a test case the problem
of Taylor and Green is considered. An exact solution to the perturbation equa-
tions was found for this case, an extension of a well-known two-dimensional re-
sult. The results of the numerical simulations agreed well with this solution for
approximately F < 1.0. Furthermore, the scaling of the potential energy pre-
dicted by the theory was also consistent with the simulation results when this
condition was satisfied. When white noise was added to the initial Taylor-Green
field, for small F tile flow exhibited subharmonic instabilities similar to those ob-
served for the two-dimensional Taylor-Grcen case. Again the perturbation equa-
tions as well as the predicted scaling of the potential energy were found to hold
for approximately F < 1.0.

In both cases the simulations emphasize the importance of nonlinearity in the
dynamics of the vortical modes. Furthermore, especially in the Taylor-Greene case, it is
clear that upscale transfer of energy to larger horizontal scales occurs, a phenomena
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suggested by Lilly (1983), and observed in the laboratory (Lin and Pao, 1979) and in
other numerical simulations (Riley et al., 1981; Herring and Mdtais, 1989; Mdtais
and Herring, 1989). It was also clear that the different horizontal layers tend to
become uncorrelated, since the horizontal flow dynamics differ in each layer. How
the layers remain weakly coupled, whether through viscous effects or shear insta-
bilities, must surely depend strongly on the Reynolds number.

If vortical modes exist on geophysical scales then their spatial characteristics
and dynamical properties become of interest. Clearly, if vortical modes somewhat
similar to those considered here were prevalent, then the vortical mode field would
be rapidly evolving in time and probably continually be subject to shear instabili-
ties. However, if vortical modes existed as two-dimensionally (in the horizontal)
stable flows, e.g., in stable rotation satisfying Rayleigh's circulation criterion
(LeLong, 1989; McWilliams, 1985), then perhaps they would be more persistent
dynamically.
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ABSTRACT

First, two terms of a resonant trans -er integral are derived for a simple one-dimensional analog to
the equations of fluid motion. The purpose of this rather academic exercise is to more clearly
illustrate the assumptions of the nisonant interaction approximation. Second, it is shown that, in
much of the region of phase space where nonlinear interactions are usually considered weak
enough for the theory to be applicable, nonlinear transfers due to bottom scattering and other
mechanisms cannot be ignored.

INTRODUCTION

Weakly nonlinear resonant interactions have been studied extensively as a model for predicting
the temporal evolution of various broad-band wave spectra. Hasselmann (1962, 1966) derived a
general wave-wave resonance theory, which I will refer to as the resonant interaction
approximation (RIA). RIA has been used with some success on the surface wave interaction
problem (WAMDI, 1988), but it is still unclear how applicable it is to internal waves. RIA-based
internal wave spectral evolution equations were derived and evaluated by Olbers (1976),
McComas and Bretherton (1977, henceforth MB), and Pomphrey, et al. (1980). Results of these
calculations have yet to be verified for any realistic ocean internal wave field, however, and the
validity of RIA for large portions of the internal wave spectrum has been called into question by
Holloway (1980,1982), Henyey et al. (1986), and Miller, et al. (1986).

The initial portion of this paper will attempt to highlight some of the basic points of an RIA
derivation using a 1-D analog. The somewhat ad hoc derivation will follow Hasselmann (1966);
a more careful derivation using the method of multiple time scales is given by Benney and
Saffman (1966), who also begin with a one dimensional example for readability. It must be
stressed that, since RIA reduces the dimension of any problem by one, the resonant "surface" for
this example will just be a set of three points. The purpose of this exercise is strictly to clarify the
mechanics of an RIA derivation, and not to offer a new way of solving one dimensional
problems.

In the past, criticisms of RIA have focused on mapping out regions of phase space where RIA
predicts interactions so strong that they violate the theory's assumptions of "weakness." There are
regions of phase space, however, where RIA predicts interactions which are so weak that they
will be overshadowed by other nonlinear mechanisms, most notably bottom scattering. The
second portion of this paper attempts to map the regions in wavenumber and frequency space
where resonant interaction theory either violates its own assumptions or predicts interactions so
weak that they will be overshadowed by other mechanisms.
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DERIVATION OF A SPECTRAL EVOLUTION EQUATION

Derivation of a resonant spectral evolution equation directly from the equations of fluid motion
is, among other things, a monumental exercise in algebra. Fortunately, the critical steps may be
highlighted by deriving a similar evolution equation for a one dimensional analog. The
somewhat modified Korteveg-DeVries (KdV) equation,

+ al -0,-:"+ x = O (1)at a3 a

has many of the same basic properties as the equations of fluid motion. It is first order in time,
non-dissipative, dispersive, and contains a quadratic nonlinearity. The dependent variable O(x,t)
is assumed to be of order one, and e is a small parameter, analogous to a Rossby number for low
frequency internal waves.

The first step in our streamlined derivation will be to expand (1) in a Fourier series. If we assume
a periodic solution in a domain -Lgx 5L, we may write

intJ

V(x,t) = 7,(n,t)e L, (2)
a

where the summation is over all integer mode numbers, and

L -i_

0(n,t) = .- jfdx4Kxit)e L (3)
2L

To handle the nonlinear term, we make use of the convolution rule,

L -in=

jxf (x,t)g (x,t)e L = (n j,t)j (n 2,0)8, 1 ~ (4)

where 8,,,+,, is the Kronecker delta. The KdV equation may then be written

Ai -ik e * A- ik 3 i ]2sn+., (5)

at 2 0 +1 (5

where k = arL is the wavenumber, and _ -(npt). Note that the factor k/2 = (n 1+n2)x/2L
appears due to the Kronecker delta and the symmetry of the summation.

It would be possible to find a numerical scheme to evaluate (5) directly for a finite number of
modes. The convolution sum could be handled by a fast Fourier transform algorithm, and a
suitable procedure could be used to integrate in time. This technique is simply a pseudo-spectral
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Fourier-Galerkin scheme, however, and has the same basic strengths and weaknesses as any of
the competing numerical methods. To take advantage of the supposed weakness of the nonlinear
term, we instead make a perturbation expansion about a first order linear solution.

Expanding our solution in powers of e, we may write

1 +21+ + " (6)

where = O(1). The linear solution is then

= A (n,t--O)e t, (7)

where co s k3 is the intrinsic frequency, and the time t is measured from the most recent time the
spectrum was measured or calculated. The A (n,0)'s are chosen such that 10 = A = at t = 0. The
second order solution will then be obtained from

2t 2 = Z 5kk,+kAiA2e'+ "', (8)
2 0 2

where the subscripts on amplitudes A, and frequencies o, denote dependence on mode number
nj = Lkjln. (Unsubscripted forms will generally be dependent on mode number n.)

Equation (8) has she solution

20 e -i £dT~j~5k.4*,A 1A 2e (9)

This may be integrated in -r to obtain

20 -- e " ZZkk.+kA A 2A(fl,t), (10)

where 0 a o1+oh-o, and

A(',) = (11)

A similar but slightly more complicated expression may be obtained for 30. While the third order
quantities must be included in the full resonant transfer equation for both KdV and internal wave
systems, they will be ignored in this discussion.
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At this point, we should make some observations on just what "linear solution" we are expanding
about. Recall that the purpose of RIA is to predict the temporal evolution of a given spectrum.
Presumably at t = 0, we know the spectrum and the A(N)'s are chosen such that the first older
solution iq5 is the complete solution q5. It is clear from (9) that 2 4= 0 at t = 0; the same applies
to higher order terms. But for larger times, the spectrum will evolve, and theA(k)'s will peri-
odically have to be updated (and t reset to zero in my notation) for the series (6) to correctly
approximate the true solution.

In an actual RIA calculation, phase information is sacrificed and A (k) is not actually calculated.
Instead we look for an equation governing the temporal evolution of an action density a (k,t),
defined as

1 A*a(k,t) -- - < > (12)

1 A A.

= >

+ { A2>+ <21 >}

where the brackets represent ensemble averages and asterices indicate complex conjugates. Our
choice of first order solution 10 implies that the lowest (second) order action term o1<4 > will
be constant. If we can assume that all amplitudes A (k) are uncorrelated and Gaussian, then the
third order terms, with their associated triple correlations, vanish identically. It must be
recognized that strong interactions in even an initially Gaussian wave field might set up
correlations between interacting wave modes. In this case, the third order (cumulant) terms may
not be neglected, and the theory will fail. If our Gaussian assumption is valid, we have

t = t < 30 >+<20 >+<A1 • + "". (13)

To perform the averaging on the middle term, it is useful to first write equation (10) as a single
sum without a Kronecker delta.

A ZL-e "),A (n )A (n-n 1 )A1, (14)

where A, -a((ko,)+o(k-k,)-o,t). We then have

<442 > = -- T <A (n )A (n-n 1)A *(n 2)A (n -n2)>AIA*. (15)
4i R,.A
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Again assuming that the A's are Gaussian random variables, we split up the fourth order moment
into second order moments to obtain

<22 > = TE A(nj)A(n-n )><A*(n2)A*(n-n 2)" (16)

+ <A (n 1)A (n-n 2)><,A (n-n 1)A (n 2)>

+ <A (n 1)A (n 2)> <A (n-n )A* (n-n 2)> IA2-

Because <A (n 1)A (n 2)> vanishes for n '-n2 (A "(n)=A (-n)), each of the second order moments
in the first term vanishes for n * 0. Because of the k 2 factor in front of the integral, we may then
drop this term.

The second term vanishes except when n1 + n2 = n. If we replace the summation variable n2 with
n 2+n, we find that the third term vanishes except when n = nI - n 2 We may then insert and
make use of two new Kronecker deltas to write

<22 > = "jY Skk,+kA(coj+(o-Co,t) 2a 1a a21(o2 (17)

+ 8kk,-k,I A(ao1-o 2-o,t) 12a 1a 2())10) 2.

Here we have made the substitution

a(n,t) = 1<1 10> = -<A(n)A*(n)>, (18)

valid for short amounts of time since the most recent update to the spectrum. The amount of time
for which this is valid will be inversely proportional to the strength of the interactions.

The spectral evolution equation for a (k) will be of the form

- e "2 a '  (19)

where again the (non-negligible) <1 3A> terms have been dropped for simplicity. The time
derivative acts only on the IA12 functions on the right hand side of (17), which have the explicit
form

I A(Q,t) 12 = 2-2cos(f2t) (20)
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The limiting behavior of these functions is essential to the validity of RIA theory. We find a
short time limit of

lim IA(!Q,t)l'12 t2,  (21)

and a long time limit of

lim (IA(Q,t)12] = 2nt8(a), (22)

where 8(Q) is now a Dirac delta. For intermediate values of t, we find a sine-like function in Q
with a bandwidth = 2n/t, as shown in Figure 1. The value of t chosen for this function must be of
the same or lesser order than the amount of time our expansion (12) remains accurate and rapidly
convergent, such that (18) remains valid.

RIA theory chooses to take the long time limit (22) as an approximation of I A I 2. In doing so, it
assumes that the first order solution holds steady long enough for the bandwidth of the function in
Figure1 to become small in comparison with a characteristic bandwidth in the internal wave
frequency spectrum. By "characteristic bandwidth," I mean a bandwidth over which amplitudes

I~ I I ' ' I ' I I I

1.5 t=lo

IA(ft) I

0.5

0.0 -2n 2n
-4 -2 0 t 2 4

Figure 1. The function IA I12/2tt, approximated as a Dirac delta in RIA theory.
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vary essentially linearly, such that the filter function depicted in figure 1 may be safely replaced
by a Dirac delta. This bandwidth has traditionally been taken as the period of the wave n,
yielding the validity criterion

2v< 1, (23)

where v is the interaction time over which (18) remains valid. It must be stressed that (23) is a
necessary but not sufficient criterion for RIA's validity -- we must also be able to somehow
justify dropping the cumulant term in (12). However, (23) is an easy test to perform, and
Holloway's (1980) implementation of it is still the only quantitative attempt to establish a high
wavenumber cutoff for RIA.

Applying (22), we obtain

2- _ +,8(o1+ca27w)a a 2wc2 (24)

+ 5 ,,.f-, 6(w1 -t2-w)a 2a0)(02,

plus similar forms for the <1030> terms. In the limit of a continuous spectrum, we have

= _ 2e2 J f dk Idk 28(k 1-k 2)8(w1+o 2-co)a a 2oo 2  (25)

+ 8(k-k 1+k )8(wo1- 2-o)a 1a 2(OIW.

Notice that RIA has reduced the dimension of the problem by one. Equation (25) is now a zero-
dimensional integral(!); the corresponding equation for internal waves will be two-dimensional.

The transfer integral for internal waves takes the form (Mlfller, et al, 1986)

ja = f fdkdkT+S(k-k-k 2)8(o'+° -wo)(a 1a2 -aa -a2) (26)
at

+ 2T-S(k-k+k 2)8(W1-ot2-o)(a 1a 2+aa I-aa 2),

where a is the internal wave action density and T+ and T- are rather messy coupling coefficients
depending on the wave vectors k, k, and k2. Resonant interactions, then, are confined to "triads"
of three waves satisfying the conditions k=kl±k2 and o=Wt±W2.

The appeal of RIA theory is perhaps chiefly tied to the reduction in dimensions associated with
the 8 functions acting on the frequencies. However, the validity of this 8 function is by no means
assured, as suggested by the requirement (23). Additionally, the Gaussian assumption, which
allowed us to drop the cumulants in (12), suggests another restriction on the strength of the
interactions, namely that the "forcing" waves n I and n 2 must have rapid decorrelation times
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compared to the interaction rates. This restriction is discussed briefly in M5ller et al. (1986), in
the context of their equation (70), but imposes a criterion which has been relatively difficult to
quantify.

For very weak interactions, we may expect the perturbation expansion to be a useful model.
However, it will be pointed out in the latter section of this paper that when resonant interactions
become too weak, other nonlinear transfer mechanisms must also be considered.

VALIDITY AND APPLICABILITY OF RESONANCE THEORY

In the tradition of Holloway (1980), interaction times predicted by McComas (1977), and MB
were compared with other readily available characteristic time scales. Approximate formulas for
induced diffusion (ID) and parametric subharmonic instability (PSI) time scales, given by
McComas and M1ler (1981, henceforth MM), were applied to the GM76 (Cairns and Williams,
1976) model spectrum. The model spectrum and the resulting time scales are shown in Figures 2
and 3, respectively. Numerical values for the GM76 spectrum were inertial frequency
f = 7.0x10s - , buoyancy frequency N = 71f, stratification scale b = 1300m, peak mode number
j* = 3, and dimensionless energy scale E = 6.3x10 -5. The hydrostatic dispersion relation

(27)
k2

where kh and k, are the horizontal and vertical wave numbers, was used throughout.

Figure 3 is essentially an attempt to replicate figure 4 of McComas (1977) and figure 11 of MB,
without solving the full transfer integral (26). It was gtnerated using equations (11) and (22) of
MM, with the ID equation (11) applying for frequencies o) > 2f/, and the PSI equation (22)
applying for o < 2f. A value of x = 1, or o' = 2.5f, was chosen in MM's equation (22) to better fit
the PSI time scales indicated by McComas (1977) and MB. (The transfer times in figure 8 of
MM appear to be approximately ten times too high.)

The figures compare reasonably well, except at very low wave numbers, and at the region near
o = 2f, where interaction rates pass through zero in the earlier plots. The discrepancies at low
wave numbers do not substantially affect the results which will follow. Also, there is no reason
to expect the actual strength of tie interactions to become small near 0o = 2f. The rightward
leaning "spikes" which appear in the earlier plots have therefore been truncated.

Mean Free Paths and Bottom Scattering

Horizontal and vertical "mean free paths," MFPh and MFP, of resonantly interacting internal
waves, plotted in Figures 4 and 5, were then calculated by multiplying the resonant interaction
times inFigure3 with the horizontal and vertical group velocities. The mean free paths then
correspond to the distances which waves may be expected to propagate before they are
significantly altered by resonant interactions. If a wave propagates more than one ocean depth in
the vertical (or one ocean width in the horizontal) before it has time to resonantly interact, it
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Figure 2. The GM76 model spectrum. The energy density is multiplied by the vertical
wavenumber k, and the aspect ratio a, such that the quantity plotted integrated over the area
dlog(k,)dlog(a) gives the energy in that area.
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Figure 3. Interaction time scales predicted by RIA theory. The formulas of McComas and
Mfiller (198 1) are used to approximate values previously obtained by solving the full RIA
transfer integral.
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Figure 4. Horizontal "mean free paths" of resonantly interacting waves. In an infinite ocean,
waves would be expected to propagate the distances shown before being consumed by resonant
interactions. The quantity plotted is the product of the horizontal group velocity with the time
scale of Figure 3.

cannot be well modeled without considering scattering effects. Figure 4 suggests that a
substantial range of low wavenumber waves will be affected by bottom scattering.

Critical Layers

Two types of critical trapping may occur for low frequency waves, as schematically illustrated by
Kunze and Miller (1989) in their figures 1A and lB.

In the presence of variable baroclinic vorticity , internal waves will experience an effective
inertial frequency

f =f + "  (28)

As a near-inertial wave propagates into a egion in which fff exceeds the intrinsic frequency, its
vertical group velocity will go to zero, sending its vertical wavenumber to infinity. This type of
critical layer is discussed in detail in Kunze (1985). If we assume thatfff varies linearly with
depth as I dffffdz I = 1.2f/3000s-lm -1, where 3000m is the bottom depth, the change infff which
a wave may experience as it propagates may be estimated by
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Figure 5. Vertical "mean free paths" of resonantly interacting waves. The quantity plotted is the
product of the vertical group velocity with the time scale of Figure 3.

IAff ,AI =  1.2.1 .min(MFP, ,3000m). (29)
3000m

When I Afff I > co - f, a wave may reach a critical layer of this type. An appropriate stall
criterion will then be

Y/> 1, (30)

where y I=!_ I I /(co - f ) is plotted in Figure 6. It is seen that, for the parameters chosen, such
critical layers may be experienced by waves with frequencies less than 1.2f and vertical
wavelengths greater than approximately 300 meters.

A second type of critical layer may occur even when the effective Coriolis parameter is constant.
A wave may have its intrinsic frequency shifted to f (orfff) by spatial variability in the
geostrophic current. In a time independent mean flow U, the Eulerian frequency (0 will be a
constant along a ray path, while the intrinsic frequency will be given by wo = o - k.U. Thus an
appropriately oriented change of geostrophic current AU = AUc, a (o - f )/kj along a ray path
will push the intrinsic frequency to f and cause the wave to stall. This type of critical layer is
discussed in more detail by Olbers (1981).

AUc,,t is plotted in Figure 7; Kunze and MUller (1989) suggest that critical layers are likely when

AU,,i < 0.05ms-1. (31)
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Figure 6. The stall criterion y= IAff I/(o)-f). Fory> 1, the effective Coriolis frequency may
increase to the wave frequency along a ray path, causing critical trapping.
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Figure 7. The change in the mean current along a ray path which, if appropriately oriented, will
push a wave's intrinsic frequency below the inertial frequency, causing critical trapping.
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The likelihood of a wave ever reaching such a critical layer will also depend strongly on that
wave's mean free path, however. To account for this, we first define a Richardson number as

rN min(3000rn, MFP2) 2

Ri a AU (32)

Replacing AU with AU, , gives a "critical Richardson number" of

Ri(,i M Nk, min(3000m, MFP,) 2(33)

which is plotted in Figure 8. We may supplement (31) by requiring that the shear be strong
enough along a wave's mean free path for

Ri < Ri,,j, (34)

to hold. Since Kelvin-Helmholtz instability will occur when Ri < 1/4, we may conclude that the
region in which this type of critical layer may occur will be bounded by the contours

Logio critical Richardson number
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Figure 8. The critical Richardson number, on a scale of either the vertical mean free path or the
ocean depth, required to cause trapping. If the actual Richardson number is greater than that
shown, the shear will be too weak for this effect to occur in the vertical distance the wave can
propagate before it is consumed by resonant interactions..
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AUo, = 0.05ms-1 in figure 7 and Ri,,, = 0.25 in Figure 8.

It should be noted that the first phenomenon, in which f,. -(o along a ray path, is vertically
anisotropic and may not occur among both upward and downward propagating waves
simultaneously. The second phenomenon, in which coo is shifted to f along a ray path, is strongly
dependent on the orientation of the horizontal wave vector, which must be aligned with the mean
flow. Finally, both of the critical layers described will no doubt be highly intermittent, and their
importance in the overall spectral energy transfer is still unknown.

Validity regions

Figure 9 divides the internal wave spectrum into five sections, using information from Figures 5-9
and the various cutoff criteria listed in the text and in equations (23),(30), and (31). We first
consider the three non-overlapping sections, divided by the solid lines. In the leftmost section,
the vertical mean free path exceeds the canonical 3000 meter ocean depth, and we expect bottom
reflection effects to be significant. This region also roughly corresponds to the region in which
the horizontal mean free path is greater than 100 to 1000 kilometers, as indicated in Figure 4. In
the rightmost section, which corresponds to the shaded portion of Holloway's (1980) figure la,

Applicability of RIA
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Figure 9. Map of RIA's potential applicability. In the rightmost solid region, the interaction time
is less than one wave period, and we expect the perturbation expansion to fail. In the leftmost
solid region, bottom reflections will be significant. In the center solid region, RIA may be useful.
In the two dashed regions, the types of critical trapping discussed in the text may also be
important.
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the interaction time exceeds the wave period, and we expect the perturbation expansion to break
down. (Again, this cutoff is a crude one, as equation (23) is not a sufficient condition for RIA's
validity.)

In the center region, RIA may in fact prove useful. Several possible obstacles must still be
recognized here, however. First, the Gaussian or random phase assumption must be tested to see
if cumulants may in fact be ignored. Second, we see that much of this region is overlapped by
the regions in which the two critical layer phenomena may (or may not) be significant, as
indicated by the dashed curves.

The area inside the leftmost dashed region, based on the criterion (30), corresponds to waves
which may be susceptible to the first type of critical layer discussed, in which f,. -4o along a ray
path. The area inside the rightmost dashed region, bounded on the left by the curve
AU ,# = 0.05ms-I and on the right and top by the curve Ri ,, = 0.25, corresponds to waves which
may be susceptible to the second type of critical layer, in which coo-+f. Since the dashed regions
overlap much of RIA's "applicability region," one might be tempted to abandon the RIA theory
altogether at this point. However, it should be mentioned that RIA's parametric subharmonic
instability mechanism yields an energy flux toward the near-inertial portion of the spectrum (cf.
MB); we may (boldly and blindly) speculate that this flux is in perfect balance with critical layer
dissipation.

SUMMARY

The one-dimensional analog has made resonance theory somewhat more accessible to all who
might be interested. Also, it has been pointed out that there is a rather substantial region in
phase space where bottom reflections may dominate the nonlinear tranfer. Finally, two types of
criiical trapping mechanisms have been discussed for near-inertial waves. While the net contribu-
tion by these mechanisms to the overall nonlinear transfer is unknown, it has been shown that
they may affect waves over large regions of phase space, including much of the region where
resonant interactions may occur. Since RIA does not predict equilibrium for near-inertial waves,
however, it has been suggested that critical layer interactions may in fact complement RIA theory
in this region.
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ABSTRACr

The issue of which variables to use for internal wave dynamics is discussed. Advantages of
Hamiltonian canonical variables are mentioned. The suggestion that vertically Lagrangian
coordinates be used is reviewed. It would be useful to separate internal waves form the
vortical mode, but no satisfactory separation has been found.

Ten years ago, a meeting was held at Scripps Institute of Oceanography (West, 1981) at which
various speakers discussed the Hamiltonian formulation of internal wave dynamics, the use of
a vertically Lagrangian coordinate system, and the mode of motion now termed the vortical
mode. These topics comprise the subject of this paper. In these ten years, we have not
compietely solved the problem; we don't really know what variables are best to use.

For the case of surface waves, the situation is much better. We have found a set of variables
for which the linear approximation is remarkably good (Creamer et al, 1989). The most
important short-time nonlinear features of the wave field result not from nonlinear dynamics,
but simply from a nonlinear change of variables. The Hamiltonian formulation and
Lagrangian coordinates played a large role in fii:..ing these variables.

Hamiltonian variables (Henyey, 1983) have a number of advantages. A very important
advantage is that conservation laws are very naturally handled in that framework. If one
makes an approximation, one generally does not destroy conservation laws, only changes their
form slightly. That is not true of approximating equations of motion. An example of a
conservation law that has been misunderstood in non-Hamiltonian frameworks is conservation
of action. A commonly studied system is the dynamics of infinitesimal waves interacting with
a single periodic wave, imagined to be an exact solution of the equation of motion. For this
problem, in the frame of reference moving with the phase velocity of the big wave, the flow is
steady. As a result, the energy, frequency, and their ratio, the action are all exactly conserved.
The key is that the energy is the value of the Hamiltonian function in that frame.

Another important conservation law is momentum conservation. In non-Hamiltonian
frameworks a concept of "pseudomomentum" has arisen. This concept is entirely unneeded;
there is no distinction between the terms that add up to the total momentum and the
"pseudomomentum". The momentian density in terms of Hamiltonian canonical variables is
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pv = linear terms -pVq -pZVq 2 -p3Vq3  (1)

Each pair of variables describe one of the linear modes; P, q,, are sound, Pz, q2, are internal
waves, and p3, q3 are vortical mode. (Only one combination of p3 and q3 is physical. This
leads to "gauge" freedom of choosing the other, as described by Henyey, 1983.)

If for example

q,=acos(ktx- wr) (2)

p2 =bsin (x- w -) (3)

then the average contribution to the momentum density is

<pv> = abk/2 (4)

The quadratic part of energy density turns out to be

E=abw/2 (5)

where co is related to k by the linear dispersion relation, so the action density is

A=ab/2 (6)

Another use of the Hamiltonian is in formal development. The Eikonal, or ray tracing method
naturally follows from a Hamiltonian formulation (Henyey and Pomphrey, 1983). Various
generalizations, such as Whitham's (Whitham, 1974) to narrow-band nonlinear waves, or the
Gaussian beam method require the Hamiltonian or the closely related Lagrangian framework.
Weak interaction transport theory is also most usefully derived from the Hamiltonian
framework; the symmetry of the interaction coefficients which leads to detailed balance,
entropy, and effective temperature is not true for arbitrary differential equations, but always
occurs for Hamiltonian systems. The symmetry is obvious in a Hamiltonian derivation.

Closely related to the Hamiltonian formulation is the Lagrangian variational formulation. The
canonical variational principle is that the action

S- = PE Pj_ (7)

is stationary under independent variation of all p's and q's. Unfortunately, the stationary value
is always a saddle point, never a minimum. In certain special cases, the problem can be
constrained (such as by assuming steady state) to make the stationary point an extremum.
Arnold's stability method, and other stability calculations are examples.
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Finally, the Hamiltonian can be helpful for finding new variables. The theory of canonical
transformations and the Hamilton-Jacobi equation can lead to better variables. In the surface
wave case we found the variables by implementing the removal of nonresonant interactions,
which always can be accomplished.

Variables can be a better choice to use if the linear approximation is more accurate. There are
several ways of telling if the linearization might be better. One way is that the high frequency
or wavenumber part of the spectrum might be smaller due to the absence of bound harmonics;
the free waves are present in either case. Another way is that the Doppler shift might be
smaller, so the dispersion relation is better satisfied. A theoretical way of determining that
linearization is better is by the size of the nonlinear interaction terms. By these criteria, the
replacement of density as a variable by vertical displacement that is referred to as removing
"fine structure contamination," or in other words, reducing bound harmonics, is an improved
choice of variables.

One possible improvement in the choice of variables is the use of the vertically Lagrangian
coordinate system. This idea is not new; both Ripa and Milder in West (1981) mention it.
More recently Odulo (1989) has written a paper advocating its use, but I do not understand his
reasons for believing it to be superior. Sherman and Pinkel (1991) have analyzed internal
wave data in terms of this coordinate system. Unfortunately, the results are not completely
convincing. There is not good evidence that bound harmonics were reduced. They did find
that the small waves were significantly reduced in frequency (Snerman used this for the cover
picture of iis thesis, see Figure 1). This presumably is associated with a reduction of the
Doppler shift, but of course the dispersion relation cannot be evaluated in the absence of
knowing the horizontal wavenumber.

What can be said theoretically? Not much. The potential energy becomes exactly quadratic,
but nonlinearities associated with stratification have always been believed unimportant relative
to the advective nonlinearity. The vertical advective terms are missing, but why shouldn't
horizontal advection be equally important? In order to stimulate ciisideration of these
variables, I present the equation of motion:

The new vertical coordinate is

z' - - €(8)

where t is the vertical displacement. The advective time derivative is

dt=at,'+u.V (9)

where

v' "a'A"+. (10)
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transformation is
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The equations of motion are

C=w (12)

d 0 w C - +( a+Z'p) (13)

dtu =-V'(dw -fxu-Vp (14)

sO'w+V7-=sV C'aZ;u (15)

The potential vorticity is

J= ./"+ (-sV )'V'xv (16)

Another reason to choose particular variables is to separate the types of motion; sound, internal
waves, and vortical motion. This separation is reasonably easily carried out in the linear
approximation by diagonalizing an operator or a Hamiltonian form, and has been done
numerous times. The linear separation demonstrates an advantage of Hamiltonian variables.

Using the usual variables, the linear vortical mode is geostrophic. With Hamiltonian variables
there is no distinction between the geostrophic and cyclostrophic cases. This is closer to
reality, as there is liule difference other than size between an eddy which rotates in a week and
one that rotates in an hour. Nonlinear separations, in general, cannot be accomplished. Sound
is generally separated by setting Vv--O while retaining the value of N' rather than the actual
stratification. This is adequate for most purposes, but not ideal.

The separation of internal waves from vortical mode is much less satisfactory. A pure iaternal
wave field can be defined by the condition that the potential vorticity

J -- (f+ 0)V(Z- 0) (17)

is a constant (such as t). Even for a pure oceanic internal wave field of typical strength, the
nonlinear terms in J are of comparable magnitude to the linear ones. It is clear that the linear
separation of IWs from vortical mode is unsatisfactory. A step in the right direction has been
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taken by Staquet and Riley (1989). They define that part of the velocity belonging to the
vortical mode by a prescription which is equivalent to minimizing the energy subject to
specified J and t fields. This prescription obviously does not separate t. One could say that

is purely internal wave, but a field with J*0 and t=O would radiate IWs in a time of order
N"'. A stationary eddy, which one would like to say is purely vortical, has nonzero t.

An alternative would be to say that J is one of the coordinates. It cannot be a canonical
coordinate, as canonical fields have Poisson brackets that are delta function for canonical pairs,
and vanish for a single field. Potential vorticity has the Poisson bracket (Abarbanel, private
communication).

{J(x),J(x')}=VJ(x) xVa(x-x') V(z- ) (18)

Even worse than not vanishing, this PB involves t which, (as discussed above) although not
entirely IW, is mostly IW.

Having reviewed the choice of variables for internal wave dynamics, it is clear that the
situation is not entirely satisfactory. For the surface wave problem, we are able to demonstrate
variables and list their wonderful properties. For the IW problem, we find difficulties with all
proposed schemes. This situation is indicative of the more general situation that internal wave
dynamics is more difficult than that for other wave fields such as sound and surface waves.
Progress has been made, however, and we are able at least to try out various possibilities.
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ABSTRACT

Both induced diffusion and the Henyey, Wright, and Flattd model predict the Gregg scaling
law

when the Garrett-Munk spectrum is used. This note discusses the scaling in a more general

context. The more general scaling is needed:

1. near the equator, where f=0.

2. if the shear spectrum is not white in vertica! wavenumber.

INTRODUCTION

Various model predictions of the energy flux through the internal wave field have been made.
These model predictions involve not only the intrinsic physics put into the model, but also the
assumed spectral form for the internal waves. Invariably, the Garrett-Munk (GM) spectrum is
used. According to the models discussed here, GM is appropriate in steady-state conditions far
from the equator. The question arises, what if these conditions are not met?

Gregg (1989) showed that a particular form describes data well. His form is a version of that
predicted by both induced diffusion (ID) (McComas and Muller, 1981) and by the model of
Henyey, Wright, and Flatt (1986) (HWF). These two models differ in their overall level, but
have the same scaling form when applied to a Garrett-Munk spectral shape.

GENERALIZED SCALING

In order to obtain more general scaling expressions for these two models, we will assume that
small-scale IWs obey a power law spectrum in vertical wavenumber, but not necessarily that
of GM. We will denote the RMS shear on any vertical scale by S; the shear spectral level
scales as S2/k,, where k, is the vertical wavenumber describing that scale. GM has S-k,'2 .

'12
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Induced diffusion is described by a diffusivity in vertical wavenumber space. This diffusivity
is given by (Muiller et al, 1986, eq. 81).

k2

D= fd(s2)aQ-vA (2)

Q and K are the frequency and wavenumber of the large scale waves contributing dS2 to the
shear variance. V, is the group velocity. For scaling purposes, the delta function behaves as
the reciprocal of its argument, and we use the term VgK, as being indicative of the scaling.
Thus, we obtain

2 tS (3)

The maximum wavenumber of the shearing waves is of order the wavenumber of the sheared
wave. (For GM, S2/K is constant, making this observation not necessary.) The group velocity
is

-N2 k; (4)

where we have assumed here and in what follows (o<<N; k <<k,.

Pu.iing it all together, we have

e=DakE (5)

where E is the energy spectral level in vertical wavenumber, and scales as

E -k) - S2  (6)
k., 3

Therefore,

C- S (7)
2 Y2
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Under steady state conditions, this form must be independent of k, , leading to the GM S -
k,"2. More generally, for an evolving spectrum, the flux is only e at the smallest scales.

These scales are presumably determined by a Richardson number criteria S-N, so

e - c N2/k- (8)

where kc is the wavenumber at some fixed Richardson number.

The HWF model is based on deterministic evolution at small scales. The steady-state spectral

form is not obtained analytically. Numerical results (Flatt6, Henyey, and Wright, 1985)

demonstrate S - k," in steady state for this model. Energy dissipation scales as

e - !JE (9)
dIt

at some fixed Richardson number.

The change of vertical wavenumber is I dk/dt I - Sk,, so

e -Sk(h  (10)

As long as w-f is not typically much smaller than f, kh/k, scales as w/N. Thus,

e-c-N Ik , (12)

exactly the same scaling as ID has. Except near the equator, typical values of 0) are of order f.
This is the origin of the f factor in the previously published scaling expressions. The models
do not assume any process happens on time scales of 1/f. If there were no separation between
horizontal and vertical scales, W would scale as N, giving e - N3/k 2, which could be obtained
by dimensional arguments. The reason the models predict otherwise is that the aspect ratio is
a dimensionless parameter.

We now assume

2- Ak,, (13)

so p=O for GM. Evaluating this at fixed Richardson number we get

N2 -A kP' 1 (14)
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Eliminating the unknown coefficient A, we get

(s)2 (~)P+1(15)

we solve for k, and put it into F,, obtaining

e N -(16)

Following Gregg, we fix k, at 2n/10m, so we get

e - caI PI(17)

This agrees with Gregg for the GM values

.a (18)

p=0. (19)

and is the appropriate prediction in more general cases from both models.
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IS SCATTERING OR REFLECTION MORE

EFFECTIVE IN CAUSING BOUNDARY MIXING?

Naihuai Xu and Peter Mifller

Department of Oceanography, University of Hawaii, 1000 Pope
Road, Honolulu HI 96822

Abstract

Comparison is made of the redistributed energy flux resulting from scattering of
two-dimensional internal waves off one-dimensional random topography with that
resulting from the reflection of two-dimensional internal waves off a straight slope.
Reflection redistributes much more energy flux than scattering does (2.86 mW m-2

as opposed to 0.99 mW m- 2 ), but reflection redistributes less energy flux to high
wavenumbers than does scattering (0.90 mW m - 2 as against 0.97 mW m - 2 to
wavenumbers greater than 10-' cpm). Scattering might thus be equally or more
efficient than reflection in causing high shears and mixing near the bottom.

1. introduction

Boundary mixing has been advocated (e.g., Ivey, 1987) as a process responsible
for. diapycnal mixing in the deep ocean. Diapycnal mixing is required to satisfy the
global balances of mass and heat and to support observed poleward heat transport.
Internal wave reflection at topography has been proposed (Eriksen, 1982, 1985;
Garrett and Gilbert, 1988) to cause this boundary mixing. Recently, Xu (1991) and
Mfiller and Xu (1991) have suggested scattering at random topography. Internal
wave interaction with topography distorts the wave spectrum and redistributes the
incoming energy flux within the wavenumber space. Waves scattered or reflected to
high wavenumbers might break and cause boundary mixing.

The reflection process has been intensively studied by Eriksen (1982, 1985) and
Garrett and Gilbert (1988). When the incident wave length is much shorter than
the radius of curvature of topography, internal waves can be treated as encountering
an infinite flat slope. The reflection process conserves the frequency and the
tangential component of the wavenumber vector. Eriksen (1982, 1985) calculated
the absolute difference between the incident and reflected energy flux which is
comparable to the incident flux. This quantity does not tell how much energy flux
could be used for generating shears, but can serve as the upper limit. In an attempt
to assess quantitatively how much energy flux is available for mixing, Garrett and
Gilbert (1988) assumed that waves with mode numbers greater than a critical mode
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number undergo instability, break, and cause mixing. This critical mode number is
determined by assuming that waves with mode numbers larger than the critical
number cause the inverse Richardson number to become larger than one. Given
typical parameters for the deep ocean, the energy flux available for mixing is about
0.25 mW m-2 (about 1.4% of incident flux), much smaller than absolute energy flux
difference calculated by Eriksen (1985).

Scattering of internal waves at a random topography was theoretically analyzed
by Miller and Olbers (1975) in the Bragg scattering or weak interaction limit.
Olbers and Pomphrey (1981) estimated the redistributed energy flux in this limit
and found it to be as small as - 10-2- 10 - of the incident one. The energy flux
available for mixing should be even smaller than this. However, the formula used to
calculate the redistributed energy flux contains an algebraic error. Rubenstein
(1988) treated a simplified problem: a two-dimensional wavefield interacting with
one-dimensional topography. In a detailed study, he found significant energy flux
transfer by assuming that the probability of scattering from an inc ident
wavenumber to a scattered wavenumber is proportional to the ratio of the respective
fluxes. Unfortunately, he interpreted this probability as a density in a vertical
wavenumber space whereas it is a probability in horizontal wavenumber space. A
systematic derivation and evaluation of the scattering integral is given in Xu (1991)
and Mfiller and Xu (1991). Here we compare the scattering and reflection processes
and concentrate on the question of which process is more efficient ill causing
boundary mixing, scattering or reflection.

We emphasize here the difference between the redistributed energy flux and the
energy flux available for mixing. The redistributed flux represents the energy flux
that is transferred to other wavenumbers, either lower or higher. When the energy
flux is redistributed to lower wavenumbers, the field becomes more stable. The
shear in the field decreases. This process does not favor mixing. On the other hand,
if wave energy flux is transferred to higher wavenumbers, shear is increased and the
flow field tends to be less stable and more prone to breaking. This process favors
mixing. The energy flux available for mixing is the energy flux to high
wavenumbers, which causes the shear to become larger than critical. This energy
flux will drive the field to instability, and breaking of internal waves thus occurs.

2. Scattering process

We consider the simplified model of two-dimensional internal waves scattered off
one-dimensional random topography or reflected off a straight slope.

Baines (1971) considered the two-dimensional internal wave interaction with an

79



Scattering or Reflection in Boundary Mixing?

arbitrary flat bump topography. The slope of the flat bump topography is required
to be less than the slope of the group velocity. The radiation condition was
formulated as a homogeneous integral equation. An incident wave impinging on this
topography will generate a forward transmitted wave and a backward reflected
wave. The solution to the system is obtained by solving a Fredholm integral
equation of the second kind. If we further assume that the vertical wavelength of an
incident wave is much smaller than the height of topography (the ratio of them is a
small parameter e1), the Fredholm integral equation can be solved to the second
order of -, so that we can obtain the lowest order corrections of the scattered energy
flux. The redistributed energy flux is then (Xu, 1991)

D1w, 0)Jda'V (w) [E (w, a') a - E(w, a)a']

[S(a+ a') + S(a- a')] (1)

where E(w, a) is the incident energy density spectrum, S1(a) the topography height
spectrum, V(w)/a the vertical group velocity, it2 = (N 2 _ W2)/(w2 

- f2 ), a the
modulus of horizontal wavenumber and w the wave frequency. For each frequency,
the energy flux is conserved, i.e., fD8 (w, a)da = 0. This can be seen from the
antisymmetric character of

[E(, a')a - E(w, a)a']. (2)

The redistributed energy flux consists of two parts: the first part is the gain of
energy flux at a from interaction of incident wavenumber a' with topographic
wavenumber a ± a'. More energy flux is gained at the higher wavenumbers than at
the lower wavenumbers. This can be seen by looking at the first part of DS denoted
by DIl (w, a). Using k' to represent the horizontal wavenumber of an incident wave
and k" the topographic wave, then D51 (w, a) can be transformed as

D11(w,a) = D'l(w, Ik' + k 'I)

= ' dk',2V()E(w, k') k' +" "IS(k)

where a = Ik' + k{'j. The transfer function is proportional to a. The scattered wave
energy flux will be larger for a high scattered wavenumber a than for low scattered
wavenumber a. The second term of Eq. (1) acts like a friction to the incident energy
flux. Waves that would be reflected to a certain wavenumber a are scattered to
another wavenumber a'. Scattering always transfers energy flux to high
wavenumbers. This result can be understood using statistical mechanics and the
H-theorem (Mfiller and Xu, 1991).

Equation (1) can be derived by several approaches (see Xu, 1991). Rubenstein's
hypothetical approach differs by a factor of y and exaggerates the scattering
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efficiency at low frequencies. This extra factor results from interpreting a
probability density with respect to horizontal wavenumber as a density with respect
to vertical wavenumber.

3. Reflection process

The two-dimensional internal wave reflection off a straight slope is considered
here. Assume that the flat slope z = s.c lies in the x - z plane where s = tan V,, the
inclination of the topography relative to the horizontal plane. The reflected
wavenumber vector is denoted as k = (k cos 0, 0, k sin 0), a = Ik cos 01. The
inclination 0 is determined by the frequency and radiation condition. The reflection
law requires that the frequency and tangential component of wavenumber vector
conserves in the reflection, The reflected energy spectrum in wavenumber space
under the constraint of radiation and boundary conditions (no normal flow across
the boundary) yields

Er(k) = E(k) (4)

where ki is the incident wavenumber vector. It shows that in the case of reflection,
the energy density spectrum at the reflected and incident wavenumber are the same.
This conclusion is consistent with Eriksen's results (1982, 1985). Under the
constraint of the radiation condition, incident waves exist in only certain permissible
regions shown in Figure 1. For each frequency, there are two permissible incident
wavenumbers, one of them is in the first quadrant, the other is in another
quadrant. If the incident wavenumbers lie in the first quadrant of the kl - k3 plane,
the reflected horizontal wavenumbers are always greater than the corresponding
incident ones, while if the incident wavenumbers are in any other quadrant, the
reflected horizontal wavenumbers will be smaller than the corresponding incident
ones. The energy flux at each frequency is therefore transferred to both high and
low wavenumbers. The difference between the reflected and incident normal energy
flux therefore is

[ cos(Or ±po)) E(wa]N 2 _l,

(5)
where 01 and 02 correspond to the two inclinations of the permissible reflected
wavenumbers. The redistributed energy flux vanishes when integrated over all
horizontal wavenumbers. At the critical frequency defined by

UC = A2 sin o + .2 cos2 o, (6)

one of the reflected wavenumbers (1, = 7r/2 + p,) becomes infinity, the other one
(0 = -r/2 - p,) goes to zero. This implies that the energy flux is redistributed to
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Figure 1: Regions of permissible incident and reflective waves in the horizontal-
vertical wavenumber plane. The heavy solid straight line represents the bottom slope.
The light solid lines represent the critical frequency cone. The cross-hatched and stip-
pled regions are permissible incident wavenumbers. For the cross-hatched regions the
reflection is subcritical, for the stippled region the reflection is supercritical. The
incident wavenumbers reflect to regions are indicated by the arrows.

very high and low wavenumbers at the critical frequency.

4. Background Spectra

For analytical convenience, we choose the Garrett and Munk model GM76
(Desaubies, 1976)

E(w,a) = b2NNoEoB(w) A(a/a) (7)
a.

where

B(w) = 2 f (032_ f2)-1/2 (8)

7r W

A(A) = 2(1 + A2) - ' (9)
7"
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and N, =5.2 x 10-3s- 1, E, =6 x 10-1 and b =1.3 x 101 m. The bandwidth is
given by

(w1/22 '/
a.(w) (10)

here j. = 3 is the frequency-independent equivalent mode number bandwidth. We
set the high wavenumber cutoff

ahc (W) = (2"-')I/ 2  , (11)

where b = 0.1 cpm. Finite incident energy flux is achieved by assuming the lower
wavenumber cutoff

r= (12)

where Al ; 0,154 based on identical energy fluxes in both the continuous GM76 and
the discrete GM81 (Munk, 1981) models.

The bottom spectrum is chosen as formulated by Bell (1975)

Si(a) = FoS(kj1) (13)

where = 0.5irFo/ao = 2.0 x 1047r3 cpm -2 is the variance and

{( ) (a2+ 2)3/2 for k, < ac (14)
S1 0 for ki > ac

describes the variation, the high wavenumber cutoff is a'. The rms height of this
spectrum is about 125 m.

In addition, we assume the parameters for typical deep ocean conditions are
f = 0.042 cph (mid-latitude, 300), N = 0.4 cph and o = 40 corresponding to
s = tan (p, = 0.07.

5. Comparison of redistributed energy fluxes by scattering
and reflection

With a specified interior internal wave spectrum and a topographic spectrum,
we can evaluate the redistributed energy flux spectrum for each process.

Figure 2 shows the comparison of the redistributed energy fluxes D(w, a) as a
futiction of a for frequency w = 1.33f in a variance conserving representation. In
the scattering process, energy flux is redistributed from low to high wavenumbers,
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Figure 2: Comparison of redistributed energy fluxes D(w, a) by scattering or reflec-
tion. Incident energy flux IF (a, w) I (solid line) and redistributed energy flux D(a, W)
(dashed line) as a function of horizontal wavenumber for frequency W = 1.33f. The
representation is variance conserving. The wavenumbers a,,, a,, and Oh, are the low
wavenumber cutoff, the bandwidth, and the high wavenumber cutoff of the incident

internal wave spectrum, respectively. (a). For two-dimensional internal wave scat-

tering model. Sl(a) (dash-dotted line) is the bottom spectrum. The wavenumber a,

and a' are the bandwidth and high wavenumber cutoff of the topographic spectrum,
respectively. (b). For two-dimensional internal wave reflection model. The bottom
slope is -y = 0.07 and the critical frequency is w, = 1.2f.
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whereas in the reflection process energy flux is transferred from medium to both
',igh and low wavenumbers. Because of no normal flow across the boundary, the
area of negative lobes equals the area of positive lobes.

Integration with respect to wavenumber a yields the redistributed energy flux

D1(w) d e ID(w, e) (15)

as shown in Figure 3. The total redistributed energy flux D+ is 3.89 mW m- 2 out of

18.2 mW m-2 , the incident normal energy flux, for the reflection process, and 1.2
mW m- 2 out of 17.6 mW m- 2 for the scattering process. The reflection process
redistributes 21% of the incident energy flux as against 6.8% for the scattering
process. Reflection is much more efficient than scattering in redistributing energy
flux. Scattering redistributes most of the energy flux near the inertial frequency,
reflection around the critical frequency.

An important difference between the two processes is the frequency-integrated
energy flux spectrum D(a) as shown in Figure 4. The reflection process

10.0

9.0]

8.0

7.0

S6.0

5.0 '

4.0-

'€. 3.0 -- I

2.0-
1.0 ....... '"* -

c __...._____.___.....____.. .... .... .. , .

10.2 f 0c 10-1 N 100

Wave Frequency o: cph

Figure 3: Comparison of two-dimensional scattering and reflection. Incident energy
flux IF,(w)I (solid line), redistributed energy flux D+(w) by scattering (dashed line)
and redistributed energy flux Dr(w) by reflection (dotted line) as a function of fre-
quency in a variance-conserving representation.
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redistributes 2.86 mW m- 2 of incoming energy flux (15.7% incident), scattering
redistributes 0.99 mW m- 2 (5.6% incident). These numbers are smaller than the
integrated D+ since contributions cancel by frequency integration. The scattering
process redistributes energy flux to much higher wavenumbers. In the scattering
process 0.97 MW m- 2 out of 0.99 mW m - 2 , the total redistributed energy flux is
transferred to high wavenumbers above 10- 1 cpm, whereas in the reflection process,
0.90 mW m - 2 , which is less than 32% of the total redistributed energy flux, is
moved to wavenumbers above 10- 4 cpm. Scattering hence must be more efficient
than critical reflection in increasing the shear and the inverse Richardson number

near the bottom.

8

46-
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2
0 ..... ...................

.... ~..............
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-4
10-7 10-6 10-5 10-4 10-3 10.2

Horizontal Wavenumber a: cpm

Figure 4: Comparison of two-dimensional scattering and reflecion. Incident energy
flux lFi(a)I (solid line), energy flux DS(a) redistributed by scattering (dashed line),
and energy flux Dr(a) redistributed by reflection (dotted line) in a variance conserving
representation.
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6. Discussions

Here we discuss some possible restrictions:

Three-dimensional scattering model

Are the conclusions drawn from the comparison of scattering and reflection
processes for the two-dimensional geometry still valid for three-dimensional model?
Miiller and Xu's (1991) and Xu's (1991) studies show that the two-dimensional
model is a good representation of the three-dimensional internal wave interaction
model in terms of the redistributed energy flux and other quantities. Using the
perturbation method, Xu (1991) and Mfiller and Xu (1991) obtain a similar result
to Eq. (16) for the redistributed energy flux

= 2 - 2 X 1~2 f
[E(w, 5,)a - E(w, a6) a]S2 ( l- ), (16)

where S2(5) is the two-dimensional random topography spectrum. S2(a) is derived
as

S2(a) &~a0a (7
S2 (a) = (a2 + a 2 )3/2, (17)

a natural extension of one-dimensional bottom topography by the assumption of
horizontal isotropy, and E(w, 6) is specified as GM76 as before.

Numerical evaluation of Eq. (16) gives similar features as shown for the
two-dimensional model in Figures 2, 3, and 4. Magnitudes differ only slightly by less
than 15% of the corresponding two-dimensional model results. The total
redistributed energy flux for the three-dimensional model is 1.14 mW m -2 as
opposed to 0.99 mW m -2 for the two-dimensional case. The gain part of the
redistributed energy flux is dominant at high horizontal wavenumbers and the lost
part at lower horizontal wavenumbers. With this approximation, Eq. (16) can be
integrated to yield

D~~wN a) 2 N LO + Pf18
, - f2 +-- V(w)[aE(w)S 2(a) - E(w, a)C] (18)
W~~)2  f 2 9  2 W

where E(w) = fdaE(w,a) and

C = daaS2(a) = 2 - 1}. (19)

This approximation turns out to be a good one; it is indistinguishable from the
numerically evaluated solution plotted in Figure 2. The approximation (18) is
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particularly useful in theoretical study to derive the quantities associated with the
three-dimensional internal wave scattering model.

Limits of the scattering theory

For the establishment of both three-dimensional and two-dimensional internal
wave scattering theory, an expansion is made in which two parameters are assumed
small: el is the ratio of topography height to the incident vertical internal
wavelength, 02 is the ratio of the slope of topography to the slope of wave rays, in
the root mean square sense. The GM spectrum implies the variance of 0

fb (27r )2N (20)
b 1000m N"

With the specified topographic spectrum S2, we ootain

el = 27r ( - 
1 2  (21)

which is of order one for the deep ocean where N/N ,-, 10-'. Bell's spectrum
implies a slope variance of

=JdaS2(a)a2 = Foaoac4 P- (0.2)2, (22)

hence

62 = 0.2 N _W) (23)

which is larger than one for w < 2f. For typical ocean conditions, the expansion is
only marginally correct and breaks down for near inertial oscillation. The transfer
to high wavenumber is a general tendency not limited to weak interaction. It
represents the approach to statistical equilibrium. Since the approach to equilibrium
is generally faster the larger the nonlinearities are, our results can be expected to
represent a lower bound.

Singularities in solutions:

Singularities might indicate possible breakdowns of the theory and therefore
deserve careful study. In horizontal wavenumber space a -* 0 and a -4 00 represent
singularities causing the energy flux and energy density to become infinite. These
singularities are overcome by assuming low and high wavenumber cutoffs. There
still exist singularities in wave frequency. For the scattering process the energy
density has a nonintegratable singularity but energy flux is finite. The reflected
energy density spectrum at or._ of the critical angles 0 = 7r/2 + ¢o (ccrresponding to
the critical frequency w) has a .aonintegrable singulaity. The reflected energy flux
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spectrum is finite here and has the greatest contribution to the total reflected
energy flux spectrum. This ensures that none of the frequencies become the singular
point of scattered or reflected energy fluxes.

Energy flux available for mixing:

The essential quantity in causing boundary mixing is the redistributed energy
flux available for mixing. For the typical parameters of ocean conditions specified in
this paper, Garrett and Gilbert's (1988) results show that the energy flux available
for mixing is about 0.25 mW m- 2 and is due to the redistributed energy flux with
wavenumbers beyond a, ; 2 x 10- cpm for the three- dimensional internal wave
reflection model. Using the Eq. (18) to estimate the corresponding elergy flux
available for mixing for the three-dimensional internal wave scattering model, we
find about 0.80 mW m- 2 of the redistributed energy flux will go to mixing.

7. Conclusions

Both scattering of internal waves off random topography (Miller and Olbers,
1975; Olbers and Pomphrey, 1981; Rubenstein 1988, Mfiller and Xu, 1991 and Xu,
1991) and reflection of internal waves off a straight slope (Eriksen, 1982 and 1985;
Garrett and Gilbert, 1988) have been carefully studied. Here we assessed whether
scattering or reflection is the more efficient process in causing boundary mixing?

In order to answer this question, we compared scattering and reflection together for
the two-dimensional internal wave models. The scattering of three-dimensional
internal waves off two-dimensional random topography is more realistic. The study
shows that the simplified two-dimensional internal wave scattering model is a good
approximation to this general three-dimensional scattering model. They show
almost similar features and only differ slightly in magnitudes-by less than 15% in
terms of redistributed energy flux. The conclusions are still valid for the general
model of three-dimensional internal wave interactions. The scattering process is
analyzed under the assumptions of (i) the height of topography is smaller than the
vertical wavelength and (ii) the slope of topography is smaller than the wave slope,
in the root mean square sense. For typical deep ocean conditions, these conditions
are only marginally satisfied, especially the slope condition, which breaks down for
near inertial waves. The reflection theory presented here is consistent with Eriksen's
work. Comparison between scattering and reflection processes is made in detail. In
the reflection process, energy flux is redistributed to both high and low
wavenumbers, whereas in the scattering process scattered energy flux is transferred
to high wavenumbers. Reflection redistributed much more normal energy flux than
the scattering process does (2.86 mW m 2 as opposed to 0.99 mW m-2 ), but the
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reflection process redistributes less energy flux to high wavenumbers, for example, to

a > 10' cpm, than the scattering process (0.9 mW m-2 opposed to 0.97 mW m-2 ).

Since most of the redistributed energy flux goes to high wavenumbers, we could
roughly estimate the redistributed energy flux available for mixing as 0.80 mW m- 2

compared with 0.25 mW m- 2 estimated for the reflection process Ly Garrett and
Gilbert (1988). Scattering might thus be equally or more efficient than the reflection
in causing shears and mixing near the bottom.
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On the Exchange of Energy Between Surface
and Internal Wave Fields
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1. Introduction
The proposal by Garrett and Munk (1972a) that there is a (more-or-less? steady

internal wave (1W) spectrum has led to continuing search for the sources and sinks
of IW energy. It has been generally thought that energy loss occurs principally by a
cascade process to small spatial scales, where turbulent dissipation damps the fluid
motion. Dissipation rates have been deduced by Garrett and Munk (1972b), Gargett
et al. (1981), Osborn (1978), Lueck et al. (1983), Gregg et al. (1986) and Gregg (1989).
These energy loss rates fall In the range 10. to 10. W m"2 , corresponding to decay
times of 10 to 100 days, with 50 days often accepted as a nominal characteristic
time.

Theoretical calculations of the energy loss rate have been given by McComas
(1978), McComas and Miller (1981), Pomphrey et al. (1980), and by Flatte2et al.
(1985). These calculations predict dissipation rates in the 10.4 to 10, 3 m range.

Numerous mechanisms for producing lW's have been proposed. Some of these
are illustrated in Fig 1, where the 1W spectral domain is indicated in a frequency-
vertical mode number diagram. Large scale flow over bottom topography (Bell,
1975), flows in the mixed layer (Bell, 1978, Kanthu, 1979), and mesoscale shears
(Watson 1985) are among the mechanisms which appear to provide significant 1W
energy sources.

The transfer of energy between surface waves (SW's) and lW's has received
considerable attention. In particular, models proposed by Watson et al. (WWC,
1976), Olbers and Herterich (OH, 1979), Dysthe and Das (DD, 1981), and Watson
(1990) have predicted the rate at which lW's receive energy from SW's. These
models have been based on weakly nonlinear interaction theory with coupling given
by "resonant triads" of two surface and one internal wave modes. The energy
exchange was significantly overestimated by WWC, who used a "locked phase"
approximation and a numerical calculation using too few modes. The calculations
of OH were limited to a specific mechanism ("spontaneous creation") and predicted
an insignificant rate of energy exchange. To obtain an analytic prediction, DD
studied what they called the "modulation mechanism" and assumed a pencil beam
of SW's. They concluded that a significant energy flow did not occur for a realistic
wind-wave field.

The IW/SW interaction was recently reviewed by Watson (1990). He noted that
the formal expressions for the interaction obtained by WWC, OH, and DD were all
equivalent, but that in none of these papers had the implications of the theory been
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Fig. 1 Some suggested mechanisms of internal wave energy input and loss. The
notation is that of Eqs. (1-4), f is the inertial frequency, and the units are W m-2 .

adequately developed. Watson investigated both the OH spontaneous creation
mechanism and the DD modulation mechanisms . He concluded that, except for
winds greater than about 20 m s" , only the modulation mechanism is of practical
significance 2. Using this mechanism, energy transfer rates of about 10.' Wm 2 were
found, but with energy flow from the IW field to the SW field. This energy transfer
rate was found to be significant only for the lowest vertical modes and for IW
frequencies within a factor of ten of the peak Vaisala frequency.

In Watson (1990) an exponential profile for the Vaisala frequency was assumed.
To obtain a more realistic estimate of the significance of IW/SW interactions,
historical Vaisala frequency data and wind speed records have been collected and
the theory applied to these. A preliminary account of the conclusions of this work
is given here.

2. Linear Wave Models

The IW/SW interaction has been treated as a weakly nonlinear coupling of the
two linear wave fields. A rectangular coordinate system with the z-axis directed
1 Note that both these mechanisms were included in the formal analyses of WEC, OH, and DD.
2 The small energy exchange rate of the spontaneous creation mechanism was observed by OH.
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upward Is assumed to have its origin in the local plane of the quiescent ocean
surface.

The vertical component of IW fluid velocity is written as

w(xzt) = E F AjK WjK(z) exp [i(K. x - 2t)]. (1)
J K

Here AjK specified the mode amplitude and W is a solution to the equation.

d2+ K' 2/lf 2 - 1) WJK = 0, (2)d(2)

WJK (0) =0.

Wjk (-b) = 0. (3)

Here z = -b is the assumed water depth and
n2 = Q2 (j,K) (4)

is the mode frequency determined from Eqs. (1), and (2), and (3). The fluid velocity
at the surface z = 0 Is U(x,t). THE GM 76 IW spectrum is used when d spectrum is
needed (see Gregg 1989, for the form adopted here).

The linear surface wave field Is described by modes having wave number k
and angular frequency

Wk = Vg0k (5)

The spectrum of SW energy/unit area at a location x is

E,(x,k,t) . (6)

The spectrum of ocean density is then

Fs(x,k,t) = Es(x,k,t/wk). (7)

In the absence of SW modulation by the IW current U, we assume an "ambient" SW
spectrum: Ea(k), Fa(k). The surface wave "modulation" M is defined as

M(x,k,t) = Fs/Fa . (8)

For our applications, we have evaluated Fa from the models of Phillips (1985),
Donelan et al. (1985), and Banner (1990). Our calculations are not sensitive to the
minor differences among these models.
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3. The Wave Interaction Model
The resonant triad condition for two SW modes having wavenumbers k and k'

and one IW mode with wavenumber K is

k -k' =K.

Wk - Wk = Q (j,K) . (9)

it Is realistic to assume that
K<<k.

2< < Wk• (10)

These conditions let us write the second of Eqs. (9) in the form

c,(k) * K = Q. (11)
where c. Is then SW group velocity. The equation

[c,(k) + U] K= Q (12)

is an obvious generalization of Eq. (11) and also represents the condition for a
raypath turning point for SW's propagating through the current U.

The "standard" deviation of the SW/lW interaction as a weakly nonlinear
resonant triad coupling begins with the fluid equations:

=-Vp + pg

dp =0. (13)
dt

Here p is the fluid density, v = (u,w) the fluid velocity, p the pressure, and g the
acceleration of gravity. The boundary conditions at the ocean surface are

Ai = w at z = (x,t), the ocean surface
dt

p(x,t) = constant at z = s. (14)

To include triad interactions, Eqs. (13) and (14) are expanded to second order in
wave amplitudes. Appropriate ensemble averaging and cumulanit discard (see, for
example, Olbers and Herterich, 1979) provide expressions for energy flow between
SW and IW spectra.

The above procedure leads to the two mechanisms noted in the Introduction:
"spontaneous creation" and the "modulation mechanism". A simple derivation of the
energy exchange rate for the modulation mechanism was given in Watson (1990).
We repeat this here. The conditions (9) let us use the transport equation:3

V+k * 'k]Fk=0 (15)
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where

R Vk H,k =-VXH, H =Wk + k U. (16)

On multiplying (15) by wk and integrating over k, we obtain

d2x
Es = f -X- f d2kk * U (x,t) F.(x,k,t) = E, (17)

where the integration Is taken over some area A0 large compared with the IW
wavelength. Since U is oscillatory, we see that Eq. (17) depends on the value of Eq.
(8).

The modulation of M may be evaluated in a straightforward manner from Eqs.
(15) and (16), as was shown in Watson (1990). The rate of energy exchange between
fields can then be obtained from Eq. (17).

When only a single IW mode is considered, we can define an e-folding rate
using Eq. (17):

E1 (K,j) = v (K,j) E, (K,j) . (18)

The sign of v determines whether energy flows to or from the IW field. To obtain
energy transfer for a finite IW spectral domain, an appropriate sum over K and j
can be evaluated.

4. Energy Transfer Rates

To evaluate the significance of the energy transfer, seasonally averaged Valsala
profiles were obtained for approximately 25 locations in the North Pacific Ocean.
Corresponding seasonally averaged wind profiles were also obtained for the same
locations. An example of the Vaisala profiles is shown in Fig. 2.

The dependence of the energy transfer rate (W m 2) for a summer profile is
illustrated in Fig. 3. For wind speeds less than 17 m/s the transfer of energy is to
the SW field. At higher wind speeds the IW field receives energy from the SW field.
Since no seasonally averaged winds above 15 m/s were found, we conclude that the
mean transfer of energy is from the IW field to the SW field. For summer profiles
this is at a rate which seems to be significant for the net IW energy balance. For
winter Vaisala profiles the rates are reduced by about an order of magnitude. This
is illustrated in Figs. 4 and 5 where the rates of energy loss are shown as a function
of horizontal wavelength and for modes I and 2.

A more detailed discussion of the implications of this process will be
published elsewhere.

3 A phenomenological model for surface wave damping is included in Eq. (15). This has little
influence on the calculated transfer rates.
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THE SATURATION OF MIDDLE-ATMOSPHERE GRAVITY WAVES

Colin 0. Hines

Arecibo Observatory, P.O. Box 995, Arecibo, Puerto Rico 00613

1. INTRODUCTION

A broad spectrum of gravity waves propagates through the middle atmosphere,
analogous to that found in the oceans. As in the oceans, this spectrum
exhibits a degree of universality over a decade or more in vertical wavenumber
m: the wind power spectral density is approximately of the form KN2m 3 over
the universal range, where N. is the unperturbed buoyancy frequency and K is a
constant variously taken to lie between 0.1 and 0.5. (In this paper,
frequencies and wavenumbers are to be measured in radians per second and per
meter, respectively, though it matters not for this particular purpose.) This
"saturated" portion of the spectrum is found irrespective of meteorological
conditions, time, place and height (Balsley and Carter 1982; Dewan et al.
1984; Tsuda et al. 1989; VanZandt 1982; Vincent 1984). The cause of
saturation in the atmosphere is still a matter for debate, as is that in the
oceans; the two may have - indeed, are likely to have - similar origins and
differences of detail only.

The most frequently employed theory of saturation in the atmosphere attributes
it to linear instability (Dewan and Good 1986, henceforth DG86; Smith et al.
1987, henceforth SFV87), though a recent paper by Weinstock (1990) makes an
important challenge based on the diffusive dissipation imposed by nonlinear
combination of the smaller-scale waves. The present paper outlines yet
another mechanism: wave-wave interaction imposed by the advective nonlinearity
of the Eulerian fluid-dynamic relations. It adapts and summarizes a three-
part set of papers recently accepted, and a fourth part recently submitted,
for publication (Hines, 1991a,b,c,d, henceforth H91a,b,c,d, respectively).
The three parts correspond to Sections 2, 3 and 4 respectively, with the
fourth part included in Section 3, and an over-all discussion is presented in
Section 5.

To set the stage for oceanographers, I should remark here on two important
differences between the atmospheric and oceanic cases: (1) The wave spectrum
in the middle atmosphere is believed to be dominated by waves propagating
their energy upward from sources at lower levels (such as winds blowing over
mountains, moving cold fronts, shear in jet streams, and tropospheric
convection that penetrates to or through the tropopause). Partial internal
reflections may occur in the middle atmosphere, but there is no strongly
reflecting single level analogous to the surface of the ocea l. Instead, the
upper levels act primarily as a dissipative region, the effective diffusion
coefficients increasing with height z. () Wave amplitudes tend also to
increase with z, in response to the decrease of gas density. (The amplitudes
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tend to grow as exp z/2H while the density decreases as exp - z/H, where the
scale height H is about 7 km.) In consequence, the wave-induced wind variance
would be expected to grow by some five or six orders of magnitude on ascending

from the tropopause (at heights of 8 - 16 km) to the turbopause (at heights of
100 - 110 km), were it not for the limiting effects of saturation and
dissipation; in fact it increases by about three orders of magnitude only, but
this still constitutes a wide range. The factor K in the saturated portion of
the spectrum is found to remain relatively constant despite these wide ranges
of anticipated and observed intensities, but the saturated range of wavenumber
m is found to shift, with at least the lower bound progressing to smaller m
with increase of height (e.g., SFV87). These features open to the
atmospherist a degree of freedom not available to the oceanographer, one that
may inspire new modes of attack on the problem of saturation and one that
provides for a testing of any new theory.

2. CRITIQUE OF LINEAR-INSTABILITY THEORY

The linear-instability theory of DG86 and SFV87 attributes saturation to
instability engendered by the wave spectrum in consequence of the latter's
growth with height. The theory is a descendant of an analysis by Hodges
(1967) in which a monochromatic, upgoing gravity wave was considered. I shall
represent such a wave as having phase variations given by [kx + ly - mz - wt],
with z the upward coordinate, m and w positive, and I shall term it a single
"mode", there being no overlying reflector to produce a downgoing complement.

Hodges determined the Richardson number Ri as a function of phase for a single
mode under approximations appropriate to much of the atmospheric spectrum.
These approximations, which I also adopt, produce the dispersion relation

(w/h) 2= (N0/m) 2 (1)

as in an incompressible medium (neglecting Earth's rotation), h M + (k2 + 12)'
being the horizontal wavenumber, taken to be << m. He found that the minimum
Ri in a single mode could fall below 1/4 (and so produce dynamic instability)
only if it in fact fell below 0 at an appropriate phase (and so produced, at
that phase, static - or convective -- instability). The required condition
for instability could be stated as a.2 = 0.5, where a. is the standard
deviation of the wave-induced shear, nondimensionalized (here and henceforth)
by division by N.. At greater heights, the wave amplitude was expected to
remain constant (be "saturated", in later parlance), or perhaps even be
reduced, in consequence of the transfer of wave energy to turbulence energy.

In DG86, arguments previously presented by Phillips (1977) for ocean waves
were adapted to the atmospheric case. The wave-induced winds of the saturated
portion of the atmospheric spectrum were taken to be produced by a succession
of wave groups (structured in the vertical) having a range of vertical
wavenumbers Am proportional to m, and these were taken to become unstable -

statically or dynamically -- when their a, reached some critical value taken
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to be of order unity. With this critical value independent of m, DG86 found
that the corresponding wind variance must be proportional to N0

2 m-2 , and so
the power spectral density within the Am group must be proportional to N.2 m-3,
the factor of proportionality being assumed to be of order unity. They then
attributed this spectral form to the observable saturated wind spectrum as a
whole, and thereby provided an explanation for the observations. A second
argument by DG86 obtained the same spectral form on dimensional grounds, with
the assumption that N. represented the only background atmospheric parameter
and m (taken to be >> h) the only spectral parameter relevant to instability:
the dimensions of the power spectral density of the winds then required that
the density itself be proportional to N.2 e -3 as before. The same spectral
form was adopted by SFV87, based only on a reference back to DG86, not on any
further argument.

The first argument of DG86 (and so that of Phillips) is subject to severe
criticism even if one accepts the assumptions that go into it: it in fact
requires yet another assumption -- a hidden assumption to date -- that the
postulated wave groups must enter the observations with equal frequency of
occurrence across the m spectrum. I see no basis for such an assumption, even
if the Am a m assumption might be justified on some scaling grounds (which I
doubt), and so I cannot accept that the first argument is relevant. The
second, dimensional argument will be valid if its assumptions are, but one of
those assumptions is that wave instability is indeed the mechanism that shapes
the spectrum: consistency is found, which is a necessary but not a sufficient
finding to establish wave instability as the relevant mechanism. The theory
of stratified turbulence, for example, as in Lumley (1964), leads to the same
spectral formi, as does the diffusive wave nonlinearity of Weinstock (1990).
Below, I shall argue that the total wind standard deviation aT is a relevant
parameter, thereby negating the purely dimensional argument, and indeed I
shall argue that the m-3 form is only an approximate accident anyway, subject
to some change from case to case and plausibly from atmosphere to ocean.

In DG86, the multiplier of N.2 m-3 was left unspecified other than that it be
roughly of order unity (probably). In SFV87, on the other hand, a critical
value of 0.5 was adopted for a.2 by analogy with the case of the single,
monochromatic wave. This critical value was first applied to a wave group
with Am - m and shown to produce N0

2/2m3 as the requisite spectral power
density. Subsequently, a model spectrum of the form (1 + [m/m.]3)-l was
assumed, m. being a characteristic vertical wavenumber determining the
transition from an unsaturated (flat) portion of the wind spectrum at smaller
m to the saturated, large-m, m-3 tail spectrum. With a further assumption as
to the length of the tail - it was taken to extend to about 200 m - and of
the form of the frequency spectrum (assumed separable), the shear power
spectral density was integrated over m and set equal to the assumed critical
shear variance, 0.5. This procedure determined the absolute intensity of the
spectral form and led to a wind power spectrum of N0

2/6m3 in the saturated
tail. This spectrum was claimed to be in good agreement with observations
better agreement, in fL.t, than that given by the N,2/2m3 result of the Am -

m "narrow-band" group. The agreement was taken as evidence not only in favor
of the instability theory, but also of the requirement to integrate the shear
over the full spectrum when establishing the condition for instability
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thereby denying the individual-group model on which the form of the spectrum
had first been based.

Here again, the favorable conclusion is one of compatibility rather than
determinacy. It could be turned quite the other way around: the wave spectrum
might be established in the model form by processes other than instability,
and the SFV87 calculation would then merely establish that the modeled
spectrum, if extended to the assumed maximum m, would indeed be unstable.

Since the linear-instability theory maintains consistency with observation, it
cannot be disproven by the criticisms I have made here; but the strength of
the arguments in favor of that theory should, I think, have been undermined.
In any event, given that theory, a further point must be made: the linear-
instability theory has been developed to date on the basis of linear wave
theory, but the model adopted to illustrate it reveals that the waves are

highly nonlinear.

If, for example, one adopts as the wind power spectral density WPSD the form

WPSD = (N/6m.) / (1 + [m/m.] (2)

favored by SFV87, one finds upon integration over m the wind variance

OT = (=/9v ) (N/m*) = 0.20( /h)(3)

where aT is the wind standard deviation as before and (w/h), is the horizontal
trace speed of a wave with the characteristic vertical wavenumber m., use
having been made of (1). This reveals that, at m,, the horizontal trace speed
is little more than twice the standard deviation of the wave-induced wind
field through which the wave is propagating. Waves having greater m will have
proportionately smaller horizontal trace speeds, via (1). At a point in space
where the wave-induced wind V has a component Vh (assumed horizontal, for the
moment) in the direction of the wave's propagation, the total time derivative
of the Eulerian fluid-dynamic equations is

D/Dt = a/at+. V = (1+Vh/ [/h] ) /at, (4)

with the Vh/[w/h] term representing a nonlinear interaction between the chosen
wave and the whole of the wave-induced wind field (plus any background wind,
in general). This interaction will clearly be of import to all waves except,
perhaps, to those with w/h 2 Vh, which will be roughly those with m < m,.
Integration of the (nondimensionalized) shear power spectral density
corresponding to (2), namely

SPSD = (m2/6m') / (1+ [m/m,] 3) (5)
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now shows tha: these relatively immune waves contribute only 0.04 to c.2. If,
as has been supposed, the critical value of a8

2 is of order unity (e.g., 0.5
as assumed by SFV87), it is evident that the requisite shears must come
primarily from the tail portion of the wave spectrum, the portion that suffers
strong nonlinear interaction. To take an extreme: at the tip of the tail,
where m - 200 m, according to the rough estimate of SFV87, the wind standard
deviation would be about 72 times the horizontal trace speed. This confirms
for the middle atmosphere a conclusion about the relevance of nonlinearity
reached many years ago for the ocean (e.g., Holloway 1980, 1981, Munk 1981).
(My own estimate of the length of the tail - to about 23 m,, as is derived
below - leads to a horizontal trace speed at the tip of the tail equal to
about a./8. This corresponds closely to Holloway's 1980 statement, that
oceanic internal waves are too energetic by two orders of magnitude to be
considered weak waves.)

These considerations reveal that, even if one wanted to pursue an instability
theory of saturation, one would in principle be forced to pursue that theory
nonlinearly, specifically with the effects of the advective nonlinearity V.V
being taken into account. As I shall argue below, the effects of this
nonlinearity seem to be adequate in themselves to shape the tail into
something like an m-3 form, at least if there is a dissipative process acting
strongly at large m. This (secondary) process could be instability, if the
tail extends to large enough m such that a.2 attains the critical value,
whatever that may be, but it could alternatively be molecular diffusion (as I
shall argue it is, above the turbopause) or the nonlinear, wave-wave diffusion
examined by Weinstock (1990).

The analysis of Hla includes a derivation of the probabilities of insipient
instability (i.e., the probabilities of finding Ri < 1/4 for dynamic
instability and < 0 for static instability) for an azimuthally isotropic,
Gaussian distribution of wave-induced winds. It shows that each probability
increases continuously from 0 as a. increases from 0 and reaches appreciable
levels (of order 0.1) for a. of order unity, thereby confirming the criteria
adopted by DG86 and SFV87 for their critical shears, and providing a firm base
for future application.

3. DEVELOPMENT OF DOPPLER-SPREAD THEORY

The intent of this section is to make an analytic estimate, necessarily crude,
of the consequences of the advective nonlinearity in a spectrum of waves such
as the middle atmosphere supports. For the purpose, I assume an atmosphere
that is wind-free and nearly isothermal in the absence of the waves,
gravitationally stratified and nonrotating. I further assume a power spectral
density of x-component (u) and y-component (v) of wave-induced wind given by

Q2 =(k/h) 2 Q2{k,1,m} = cos 2U Q2{a,h,m} (6)

and

Q = (1/h) 2 Q2{k,l,m) = sin2c Q2{ch,m} (7)
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respectively, where c -arc cos k/h= arc sin 1/h is the azimuth of wave

propagation and Q2 is the power spectral density of the wave-induced wind in

the azimuth of the wave's own propagation. The notation within braces is

intended to indicate that Q2 may be thought of as a function of horizontal-

component wavenumbers k and 1, or azimuth a and horizontal wavenumber h, in

addition to vertical wavenumber m.

The spectral components are taken to be randomly phased relative to one

another, and the spectrum is taken to be broad, in which case the Central

Limit Theorem establishes that the horizontal wind components will have a
Gaussian distribution: the probability of finding u between u and u + du is
given by

Pu {u} du- 1 exp{-u2/2V) du, (8)

where Vu is the variance of u, given by

V u =u =f (k/h)2 Q{k, 1,m} dk. dl. dm (9)

=fffcos2a e2{, h, n} h da. dh. dm

and likewise for the y-component. (The spectrum is taken to contain only
upgoing waves - that is, waves with positive m, under present convention -

and the integration over m is correspondingly restricted.) For convenience, I
shall assume an azimuthally isotropic spectrum, so that Q2 is independent of
azimuth and the integration over o may be conducted trivially. Then each of
the two variances is equal to half the total (horizontal) wind variance aT2:

2 Vu = 2 Vv = Ca = 27cffQ2h,A h dh.dCM (10)

and

Pu{u} = u 1 exp { au/a . (11)

Similarly for Pv(v).

I now assume that a spectrum of the type assumed is incident on the middle
atmosphere from below, where the waves can be taken to be non-interacting --
i.e., linear wave theory applies. The Q2 of the spectrum there will be
denoted by Q,2, the "i" indicating "initial". The task now is to determine
how this spectrum will alter with height, as wave amplitude increases and the
advective nonlinearity comes into play.

For the purpose, I consider a small packet of waves in the middle atmosphere
having wavenumbers in the bin Ak.Al.Am at {k,l,m). This is not to be
construed as a physical wave packet, engendered by some particular source, but
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rather just a mathematical construct deriving from the waves that happen to be
at hand. I take it to be propagating through the irregular wind system
provided by the full wave spectrum, but I take the effect of that wind system
to be introduced only by the horizontal component of wind and to be treatable,
in its statistical consequences, as if that component were a "background"
wind, unvarying in time or horizontal position. These restrictions will limit
the accuracy and to some extent the validity of the form of subsequent
relations, to be sure, but it is to be hoped that they do not invalidate the
general (statistical) tendencies that will be revealed.

Given these assumptions, the chosen wave packet will retain its c and h
unchanged; I shall take = - 0 for convenience at the start. In the underlying
region, the packet's intrinsic frequency will be wi and its vertical

wavenumber will be

mi = NOV/W i (12)

from (1). At some height of interest, however, where the wave-induced wind
field has x-component u, the intrinsic frequency will be Doppler shifted to

W = (ai - ku (13)

and the dispersion relation (1) then establishes that

m- 1 = mri1 - u/No. (14)

That is to say, the spectral energy located in the bin Ak.Al.Am at (k,O,m) in
wavenumber space, at a point in physical space-time where the x-component of
the total perturbation wind is u, will have arrived there as a consequence of
Doppler shifting from the vicinity of (k,0,m i) with mi defined by (14).
Though (13) permits w and wi to differ in sign, such an occurrence would
indicate Doppler shifting through the critical condition w = 0 at which
extreme dissipation is anticipated; it will not be admitted in the present
work. Correspondingly, with mi restricted to positive values, m will be
likewise restricted.

It is known from previous work (e.g., Hines and Reddy 1967) that (u')2 M-1
must be height-invariant as a single mode (with perturbation wind u', vertical
wavenumber m) propagates through a background wind system, if reflections are
ignored (as in a WKBJ treatment). I take the spectral analogue of that
conclusion to be that Q2 m- dm must be invariant under Doppler shifting in
the present case. (The standard exponential growth with height has not been
taken into account here. It applies uniformly across the whole spectrum and
so plays no explicit part in deforming the spectrum. It will be reintroduced
later.) Thus, were the u of (14) the only u ever encountered, we would find
that

e2m-1 dn = Q m-1 di (15)

or

Q2  m -1 (dMl/drn) C Q m 1 Mi., (16)
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where Qi2 is the Q2 of the initial spectrum and the derivative has been taken
from (13) subject to u being held constant.

In fact, one finds a whole range of u's at a given point of space in the
course of time; (16) is found only with a certain probability, given by
Pu(u) du for a small range du about u. This small range corresponds to a
range dmi about the initial mi such that

du = Idu/dmI din 1 = NO Mrn2 dmi ,  (17)

in which the derivative has been taken from (14) subject to m being held
constant. In combination with (11) and (16), and with integration over all
contributing dmi, this implies that the Q2 appropriate to (k,0,m) is given by

Q2 {k,o, ri = f 2 {k,O,m ) m-1 m-1 N,, P,(o,(m-1 - m-1 )} )n.. (18)

In the present case of an azimuthally isotropic spectrum of waves, this may be
rewritten in terms of Q2(h,m i ) and Q,2(h,mi), with P, the corresponding
isotropic probability, thus:

Q2{h, : fO h, mil No exp _{N2o(milm-1)2/ 2z} dmi . (19)

If the vertical wavenumbers are nondimensionalized via multiplication by
aT/No, the transformation may be rewritten as

f h
- (M'-m

- 1) 2

Q2{h, = Q4{ M1 } ] dMi, (20)

where

M a mc TINO (21)

and similarly for Mi.

The factor in brackets in (20) may be thought of as a transfer function,
leading from the initial to the observable spectrum in the scaled units. It
is independent of h as well as azimuth, and so applies equally to the one-
dimensional (in m) spectrum obtained by integration over h, the spectrum that
exhibits an approximately m-3 portion in the middle atmosphere. Its
consequences are indicated here with the aid of Figures 1 and 2.

Figure 1 exhibits the transfer function itself, as a function of M, for a
number of values of Mi in a range about Mi = 1 (for which wi/h = UT). This
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function may be thought of as the statistically observable spectrum Q6
2

derived from a delta-function input spectrum at Mi = M6, this position being
marked by the abscissa of the heavy dot on each curve in turn. This
observable spectrum is seen to be broadened - or Doppler spread -, with its
peak moving to an M value somewhat lower than M6 and a tail extending to

higher M. From the form of (20), it is apparent that this tail asymptotes to

the form H-1, and yet, for M6 values somewhat smaller than 1, it exhibits a

markedly stronger variation before reaching the asymptotic form. Indeed, for

M6 - 1/2, it exhibits something close to an K-3 form over at least a decade in
M, which would be consistent with what we know of the actually observed
spectra. (The percentages associated with the individual curves will be

explained shortly.)

Figure 2 exhibits the convolution Q.2 of the transfer function with a step-
function input - with an input spectrum that is flat (white noise) up to some
cutoff value M , (labeled and with abscissa marked by the heavy dot on each
curve in turn) and is then cut off to zero. Again a tail is found, with the
M-3 form occurring again and extending over at least a decade in M, now for M,
- 1/2.

2Q

log 10 C .

1 .4 lo 0 0 2 lo\0

-l I

-l 24%

+ I

2

%

1 2 P

Figure 1 Figure 2 Figure 3

It would seem from these examples that the advective nonlinearity has a

propensity for producing a semi-universal spectrum of the observed form, at.

least if some mechanism exists that would prevent incident waves having M

1/2 or 1 playing any substantial role in the observations. I suggest that the

required mechanism is to be found in the approach of such waves to critical-

layer interactions at and below the height of observation. As an

approximation, I assume that waves with vertical wavenumber exceeding some

maximum value mM (scaled alternatively to 
MM) are simply obliterated.
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The probability of a wave with incident wavenumber M. having a local
wavenumber less than m, and so escaping obliteration, is given by

PE= 0.5 + 0.5 erf tNo/mir-No/mma4, (22)

= 0.5 + 0.5 erf{Mi1 -M}(2

adapted from (2.22) of H91b, erf being the error function,

erf (x) = 21c2feq2dq

This probability is depicted by the continuous curve in Figure 3 for the case
Mm - 11.5, which will be justified below, although the critical-level case
Mm - - is not much different. (The percentages marked on Figure 1 represent
the complementary probability, namely that waves of the respective M6 values
will indeed be obliterated.)

This PE curve applies only locally, at the height currently of interest. To
have survived to this height, the waves must have avoided obliteration at all
lower levels. The probability of this successful escape is roughly the
product of the probabilities of escape through each of the statistically
independent underlying slabs of atmosphere. I take the depth of each such
slab to be A/2, where A. - 2ir/m c is the cutoff vertical wavelength of the
incident wave spectrum -- the transition wavelength between the small-m body
and the large-m tail spectra - and I number the underlying slabs with the
index n, counting downward from the current height of interest. I also take
aT to vary with height as exp (z/4H) and nmOT to be height-independent (see
below). The probability of successful escape through all underlying slabs is
then the product of individual-layer factors given by (22) for each in turn:

f1 = TI (0.5+0.5 ez [ IN0 exp {nX c/81/mioT - N0 /mp ), (23)
n-1

where n, is the number of slabs between the height of observation and the
source height. The R curve of Figure 3 represents this probability for M. =

11.5 again, with the use of A. = 1.07 km and H = 7 km, which are
representative of the middle stratosphere (ca. 25 km height), and n. = 30,
corresponding to a source 16 km below. This curve clearly exhibits a sharp
cutoff that might he approximated by a step function sited at some M, in the
range 0.5 - 1, as was wanted. (This calculation and these curves are newly
presented here; they are not contained in H9lb but are now submitted for
publication as Part IV of the in-press series.)

A finite M., such as I have adopted, can be imposed by molecular diffusion
(viscosity and heat conduction), and in the next section I take it to be so
imposed above the turbopause. Below the turbopause, where (by definition)
turbulence is to be found, linear instability might well provide the relevant
mechanism. But it would be the mechanism, now, for limiting the length of the
tail, not for determining the tail's form or intensity. Examination of this
possibility in any detail analytically requires an analytic model spectrum.
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In H91b, following VanZandt and Fritts (1989), I adopt the "modified
Desaubies" spectral form

Q2 M) = Kin! (1+[M/MJ4) (24)

where m. is a characteristic vertical wavenumber corresponding closely to m.
in Section 2, in that it marks the onset of the tail portion of the spectrum.
The mc notation is justified because this m. is analogous also to the cutoff
of incident wavenumbers in Figure 2, where too the tail may be said to begin.
I take as my choice mc - No/2a T (or Mc - 1/2, in Figure 2), on the empirical
grounds that it seems to represent as close to observed reality as a step-
function approach to the cutoff is likely to ccme, but witn legitimacy being
provided by the 11 curve of Figure 3. This choice combines with (24), from
which aT2 can be inferred by integration, to establish the value of K as
No2/Xm=4. (The integral is only weakly dependent on the upper limit of
integration m., provided that Nm >> mc as I take it to be, and so integration
to infinity is appropriate.) Then (24) becomes

Q 2{m} = 2 4 4 ) (25)=N m/rm, (I + [M/MC14

which approximates to N.2/rM3 in its large-m tail. The ii-tensity of this tail
is fully consistent with observations (cf. N0

2/2m3 and N,,2/6m3 cited in Section
2), and it was derived with no assumption being needed as ti the critical
value of shear or even the existence of instability as the Linear-instability
derivations required). Those assumptions are replaced hee by che assumption
of No/2aT as an effective cuteff of incident wavenumbers -.- an assumption
justified by the continuous curve of Figure 3, at least for the widdle
stratosphere.

I would argue, further, that in the limit of small m tbh w-v, id be
unaffected by dissipation or Doppler spreading and hence the -ectral
density in that limit should grow with height as exp z/4. Ib iption,
imposed upon (25), leads directly to

mc = m o exp -z/4H (26)

and so also to

a T = (No/2mo) exp z/4H, (27)

with m. a constant that would be determined by the initial energy sources,
specifically those producing small mi. These height variations are in accord
with observations as I know them; specifically, the wind va'iance now growq
with height at half the rate appropriate to a nonsaturatiry, nondissipating
spectrum, as it was said to do observationally in Sectiin 1.

The (nondimensionalized) shear spectrum can be obtained from (25) via
multiplication by m2/No2, and then integrated to obtain the shear va-ance a,2 .
The integral is logarithmically divergent and must be terminated at so'e ?pper
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bound mm, beyond which the spectrum is of turbulence, not of waves. Then

s
-= (40 1 in {1+ [m./rm] 4) = ir-ln {m m(28)

where mm >> m, has been assumed. Now, if instability is to determine N, as
being Ni.. t say, this shear variance must equal the critical value ascritt
for the marginal maintenance of instability, whatever that may be. Hence,

mMflns = m0 exp {Ocrit}. (29)

If I take a...i t to be 1, as suggested in Section 2, then (29) yields
Ni..t/m. - exp 7r - 23: the tail extends over a 23-fold range in m. This is
the value that leads to the P. curve in Figure 3. The result mmiflt/mC - 23 is
consistent with the observations known to me, and specifically with those of
Dewan et al. (1984), though perhaps for the unfortunate reason that the data
do not extend reliably over a greater range. It is possible that (29) would
be used best in the opposite direction, as a means of determining asrit2

empirically from observed values of minnt/mr.

In H9lb, an appendix establishes that inclusion of the Coriolis force
associated with Earth's rotation leads to a tail spectrum that asymptotes to
m-2 (rather than m-1 as in (19)). A second appendix outlines a failed attempt
to reach an m-3 form by the further inclusion of the wave-induced vertical
wind field in the advective nonlinearity, and a third appendix deals briefly
with azimuthally anisotropic conditions. I consider my failure to produce an
m-3 asymptotic form to be serious only from one point of view, to be discussed
in Section 5; specifically, I do not consider it to be serious for purposes of
comparison with data. This is because I have obtained here, at least for the
cases M6 - 1/2 (Figure 1) and M. - 1/2 (Figure 2), the wanted M-3 form as a
transitional form bridging the gap between low wavenumbers, which are
unaffected by Doppler spreading, and high wavenumbers, which will be subject
to dissipative processes and so will (probably) be altered from whatever
asymptotic form they might otherwise have achieved. So far as I am aware,
that is all that the observations demand.

4. FORMATION OF THE TURBOPAUSE

Molecular diffusion increases with height through the atmosphere and imposes
an ultimate cutoff of the wave spectrum. I suggest that turbulence terminates

the turbopause is formed - when the cutoff imposed in this manner, which
occcs at sone N given roughly by

1(30)

m,, = (Nh/2n1) ,

limits the length of the tail to a value just less than that required for the
occurrence of instability. (See H9lc; q is the molecular kinematic
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viscosity.) Equality of mZ01 and mminf t at the turbopause then requires there
that

1

in N-2/ 3 X71/ 3  (31)0 Scri "1 in (20 T h 13,

Ah - 2w h-1 being a (representative) horizontal wavelength. One would like to
solve this equation for the height at which it is satisfied, thereby
determining the height of the turbopause, but Uscrit2 is as yet unknown to the
accuracy required for a meaningful conclusion. Instead, I use it Lhe other
way around, as a means of estimating ascrit 2 .

The turbopause is typically taken to lie at a height of 100 - 110 km, where
q 100 m2/s and N. - 0.02 s-1. If I adopt a representative Ah - 50 km and a
representative aT = 30 m/s, then (28) yields ascrit2 - 0.497, almost exactly
the value chosen by SFV87. This seems to be a perfectly reasonable value of
a. to accept as a condition for the termination of instability, particularly
since the wave spectrum might well have been narrowed to a nearly
monochromatic wave by the time turbopausal heights are reached. The same
estimates combine with the modified Desaubies spectrum (25) to imply a
spectral peak (which occurs at m, - 3-1/4 m, = 0.76 mc) at a vertical
wavelength of A. - 25 km. Such a value is frequently reported as dominating
the spectrum at turbopausal heights, often with the (possibly false)
identification of the observed wave as the diurnal 1,1 tidal node. The
maximum m, mN, corresponds to a vertical wavelength of about 4 km, which is
consistent with observations.

With the model spectrum taken to be applicable down to the tropopause, it can
now be employed to estimate the wave spectrum in the middle stratosphere,
where it can be compared with other data. There, both AP and aT will be
decreased by the fourth root of the atmospheric density ratio, as given by
(26) and (27), which root is approximately 18, yielding A. = 1.4 km and aT
1.7 m/s. If mNi.t -1 is similarly scaled, it yields a transition from waves to
turbulence at a vertical wavelength of about 220 m, whereas if oscrit is raised
to 1 before the scaling is done it yields a vertical wavelength of 46 m for
the transition. The observations of Dewan et al. (1984), for example, are
said to exhibit a tail with log-log slope of -3.0 extending from about 1 km
down to about 200 m in vertical wavelength, with some curvature (consistent
with that in Figure 1 above) at smaller wavelengths, down to about 40 m. The
observations are said to be unreliable outside this range, but the theory is
clearly compatible with the reliable observations. Moreover, the mean wind
power spectral density at a vertical wavelength of 1 km was found to be 3.42
(m/s)2/(c/m), which converts to present units as giving a tail spectrum of
0.306 No2/m3. This is to be compared with N.2/rm 3 - 0.318 N.2/m3 in the present
theoretical model.

It should be specially noted that, above the turbopause, molecular diffusion
simply replaces instability as the mechanism of dissipation, but the Doppler-
spread theory continues on, otherwise unaffected in principle (until the
spectrum becomes so narrow that a statistical treatment is inappropriate).
There is, however, one side-effect that comeb into play. At these great
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heights, the statistically independent slabs of atmosphere are much thicker,

so there will be fewer of them in the height range 4H over which aT decreases

substantially (on moving downward from slab to slab). Consequently, the

product probability IT in (23) is unlikely to be decreased from PE in (22) by

anything like the degree illustidted by the transition from the one curve to

the other in Figure 3. The cutoff of incident waves will then not be as

sharp: a step-function approximation may be inappropriate and the spectral

form of the tail might be more like one of the forms depicted for values of Mc
equal to or greater than I in Figure 2.

5. DISCUSSION

The present analysis has adopted a necessarily approximate approach to the

estimation of the effects of Doppler spreading in the middle-atmosphere

spectrum of gravity waves. Despite its failings, however, it seems to have

shown that these effects are important -- are even necessary to include in any

alternative theory of zhe spectral tail -- and on their own are of a nature

that accords with observation, without the necessity for an alternative
theory.

The importance of the advective nonlinearity that gives this Doppler spreading

has been recognized in oceanographic studies for more than a decade now (e.g.,
reviews by Holloway 1980, 1981 and Munk 1981), and some progress has been made

in numerical studies that incorporate its effects (e.g., Flatte et al. 1985).
'.e present analysis might well be carried over to oceanographic studies, and

.erhaps improved, to account for the approximately m-3 spectral form in

velocity (or m-1 spectral form in shear) that is found there over a middle

range of vertical wavenumbers.

In making the transition, one would have to include both upgoing and downgoing

waves, but that change will be of minimal operational consequence. One would

also have to drop the exponential growth of wave amplitude with height, a

change that would have at least two important consequences, one operational

and one conceptual.

Operationally, the step that led from the continuous to the broken curve of

Figure 3 will not have the exponential change with height that is allowed for

in (23). Instead, the full ocean depth D will act uniformly to limit the

probability of esca, e from obliteration, and that depth will be measured in

some height-independent characteristic wavelength A, (- 10 m) to give a very

large number of st tisticaily independent slabs. The relevant probability for

escape from obliteration will be given by a modified form of (23) in which all

factors are identical and the required probability becomes simply the

prob 'ility of escape from obliteration in one slab raised to the power 4D/A.,

a ve i large number and one that will produce an even closer approach to a

step-function forr than that given by the H curve in Figure 3. (The relevant

power will be even greater than 4D/Ae, if it is held that the borderline waves

can pzopagate up and down more than once before being obliterated. The

relevant power may, moreover, change somewhat with D from case to case and st,

perhaps produce cutoffs and spectral slopes that similarly change somewhat,

observationally. Thee questions epen the way to further investigation.)
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Conceptually, the physical growth of wave amplitude with height that occurs in
the atmosphere must be replaced, in oceanographic work, by the imagined growth
that would have occurred, had the spectrum of waves been "turned on" with a
gradually increasing intensity, a gradually increasing nonlinearity. Or,
alternatively, it might be replaced simply by a straightforward calculation of
the steady-state nonlinear result, if such a calculation can be said to be
straightforward.

Happily enough, such a basis for calculation has in fact been laid already by
Allen and Joseph (1989), but it was developed in different terms. That work
adopts (in its Case III) a canonical spectrum of waves as described in a
Lagrangian formulation and evaluates the appearance of the spectrum as it
would be seen in Eulerian coordinates. The waves are fully linear in the
Lagrangian description - their frequencies and wavenumbers lie on the
dispersion-equation surface in 4-space - but are allowed to appear nonlinear
in the Eulerian description, with the nonlinearity arising from the advective
nonlinearity of the Eulerian equations only. That is precisely the transition
that I have attempted to model here, beginning with the initial spectrum from
which nonlinearities were excluded and ending with an observable spectrum in
which the effects of the advective nonlinearity are included (albeit for
reasons of amplitude growth with height, rather than a transition from a
Lagrangian to an Eulerian description).

The Allen and Joseph work reaches (amongst other things) an m-3 form for the
ultimate tail spectrum, a thing I have been unable to do. As noted above,
inclusion of the Coriolis force (which Allen and Joseph included) would have
led me to an m-2 form, but that is not enough. Allen and Joseph automatically
included also the part of the advective nonlinearity that comes from vertical
advection, a thing I have been unable to achieve successfully, and I suppose
my failure is a consequence of my oversimplification of the means of handling
the Doppler ihifts. This leaves a missing link in the chain connecting my
work to theirs, but conceptually the two approaches seem ide.tical in the
intended transition they incorporate.

The Allen and Joseph work as developed to date does not give the form of
transition from the small-m body to the large-m tail of the wave spectrum,
which is what my own analysis does succeed in doing, however approximately.
It is this transition, rather than an asymptotic tail (which would in any
event be deformed by dissipative processes), that is seen in the middle
atmosphere, I believe. Perhaps it is this same transition in the oceans, as
well.

Acknowledgments: I wish to thank Carmen Torres for her assistance in the
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National Science Foundation.
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DIAGNOSING DIAPYCNAL MIXING
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ABSTRACT

The diapycnal mixing associated with a small scale mixing event is discussed. A direct numeri-
cal simulation of a wave packet propagating through a density stratified shear flow and breaking
at a critical level is used to illustrate the issues involved in diagnosing mixing. An indirect
approach, based on the density variance equation, is shown to be an ambiguous indicator of mix-
ing. A direct approach, based on the simple idea that net mixing implies a change in the volume
of fluid enclosed by a given pair of isopycnals is presented, along with a potential energy analysis
and an estimate of the mixing efficiency of the event.

INTRODUCTION

The role of diapycnal mixing in maintaining the large scale heat balance is an importapi
unresolved issue in small scale oceanography. Although the relative contributions to the overall
mixing from the interior and at boundaries is in question, much of the diapycnal mixing in the
ocean interior is thought to result from isolated, intermittent tur .lent "events". Quantifying the
mixing associated with a given event is not an easy task. Observational efforts have attempted to
determine the diapycnal diffusivity of mass Kd. Generally, measurements of the dissipation rates
of kinetic energy or temperature variance are used to infer net vertical fluxes or diffusivity, based
on assumed dynamical balances. A review of these techniques can be found in Gregg (1987) or
in Moum (1989). The validity of the assumed balances, however, has not yet been well esta-
blished for the variety of dynamical mechanisms capable of producing turbulent mixing events.
From a theoretical viewpoint, it is not clear what type of sampling and averaging is necessary to
separate the reversible small-scale internal wave fluxes from the turbulent fluxes.

Large scale ocean circulation models depend critically on details of the parameterization of small
scale mixing. Understanding the diapycnal mixing of individual events is an important early step
toward the eventual parameterization of small-scale processes and predicting their effects on the
large-scale ocean circulation. In this paper, we will focus on the issue of diagnosing the diapyc-
nal mixing of an isolated turbulent mixing event. A high resolution, three-dimensional primitive
equation model will be used to generate a mixing event, similar to what may be seen in the ocean
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interior. The simulation is similar in spirit to the two-dimensional calculation of Winters and
D'Asaro (1989). In the simulated flow, a spatially isolated internal wave packet propagates verti-
cally into a horizontal shear flow. The wave packet is refracted by the background shear, ulti-
mately reaching a critical level where the horizontal phase speed matches the ambient flow speed.
Near the critical level, the wave becomes highly nonlinear, developing localized overturns and
high shears. The wave breaks through a three-dimensional instability and energy is driven to
small scales, where it is rapidly lost to dissipation and diffusion. The instability mechanism is
discussed in Winters and Riley (1991). Our interest here is in the diffusive mixing associated
with the event.

We will first attempt to diagnose the. mixing indirectly, by appealing to the density (or tempera-
ture) variance equation. This approach is shown to be problematic, as the production of density
variance can be accomplished both by adiabatic (nonmixing) as well as diabatic (mixing) effects.
We then illustrate a direct method in which the two effects are isolated. The method is conceptu-
ally simple, based on the idea that mixing implies changing the volume of fluid between given
isopycnals. This idea leads naturally to the concepts of available and background potential
energy which are also useful for diagnosing diffusive mixing.

FLOW SIMULATION

A mixing event is simulated by numerically solving an initial value problem in which a wave
packet propagates toward a critical level, where it breaks down into much smaller scale motions.
The equations of motion for the (dimensionless) velocity vector itJt) = (u ,v ,w) and the per-
tufration density p, with respect to an ambient linear profile @(z) , are listed below.

T +  .V1= -Vp -Ripz + Re. - V6  (Ia)at
+ V . Vp - w = Pr,-1 Re. -1 V6 p (lb)

at

V.i =0 (ic)

The parameter Ri is the bulk Richardson number defined as Ri = [NL 1U 12 with constant
N 2 = -g /Po d O/dz. The equations are solved in the unit cube 0_ x ,y ,z < 1 with periodic boun-
dary conditions in all space dimensions. The grid is uniform, with 32 points in each horizontal
direction and 200 points in the vertical. A pseudo-spectral numerical algorithm, with second
order Adams Bashforth time stepping is used to evolve the flow field in time.

Sub-grid scale model:

A sub-grid scale model is incorporated through the inclusion of "hyper" viscous and diffusive
operators. Mathematically, the physical Laplacian operators and their coeffecients have been
replaced with nonphysical V6 operators and new coefficients. The magnitude of the coefficients
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depends on the grid resolution. For high resolution grids, these parameters can be extremely small
since the sixth order derivative introduces a factor of wavenumber to the sixth power. By choos-
ing these coefficients to be small, 0(10-17), the viscous/diffusive effects can be confined to the
narrow region of wavenumber space near the resolution limit. This leaves the remainder of
wavenumber space to be treated essentially inviscidly and nondiffusively. To contrast, a second
approach would be to leave the physical terms in the equations and choose an unphysically small
Reynolds number. The form of sub-grid scale model chosen preserves the diffusive character of
the small scale processes and is convenient to implement in a spectral scheme. It does, however,
have important physical implications and needs some justification for the present study. We note
that any diffusive mixing that occurs in the simulation will be done by "hyperdiffusion"
and hence must be regarded as occurring at subgrid scale. In employing this form of sub-grid
model, two important assumptions are made. First, we assume that the overall rate of dissipation
and diffusion is controlled fundamentally by the rate of downscale energy transfer and not by the
specific form of the viscous/diffusive operators. Second, we assume that the transfer of energy
back upscale from the sub-grid scales is unimportant.

Initial conditions:

An ambient horizontal shear flow U (z) and a downward propagating internal wave packet are
specified as initial conditions. The wave packet is specified to be two-dimensional, with varia-
tions in the x and z directions only, with nondimensional wavelengths of 1 and 1/8 respec-
tively. The packet is localized in the vertical by a slowly varying Gaussian envelope. The form
of the ambient flow U is chosen so that a critical level is present at z, = 0.54. A broad band
spectrum of small amplitude, three-dimensional "noise" is also initialized, allowing the flow to
evolve into three dimensions.

Flow evolution:

The equations are integrated forward in time for 50 buoyancy periods. The wave packet pro-
pagates downward from a region of no shear into the ambient flow. Refraction of the wave by the
mean shear impedes its progress and reduces the intrinsic scale of the wave motion. The wave
steepens near the critical level and creates regions of overturned isopycnals and strong shear
before "breaking" into small scales which then dissipate and diffuse.

Figure 1 shows profiles of displacement taken at a fixed horizontal location at several points in
time. The initial Eulerian phase speed of the wave packet is zero. The intrinsic right going phase
propagation is balanced near the top of the figure by a left flowing mean current. The current
speed is zero at z, , where the wave becomes critically refracted. The prescribed wave envelope
is nearly zero in the region shown in the figure, thus the displacements are initially small. Later,
the wave has propagated into the region from above, resulting in finite displacements. Figure 2
shows contours of the density field sampled at the same horizontal location. Note the overturns
in the isopycnals near the critical level at about t=20. Clearly, the most interesting flow dynam-
ics occur in this "wave breaking" region. The remainder of the paper will concentrate on the
diagnosis of the diffusive mixing associated with the flow in this region.
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Figure 1. Vertical profiles of (dimensionless) isopycnal displacement are shown at several
times t (in buoyancy periods). The wave packet propagates downward toward a critical level,
depicted by the broken line.

DENSITY VARIANCE AS AN INDICATOR OF MIXING

We begin our discussion of mixing by looking at the dynamical balance of the density variance
equation. The equation for the density perturbation from an ambient linear gradient is

2+ i. Vp - w = D (p) (2)
at

where D (p) is simply the "hyperdiffusion" term appearing in Eq. (lb). The perturbation density
p can :-e further decomposed into horizontal mean and fluctuating components; p=p+p'. Multi-

plying Eq. (2) by the fluctuating component p' and horizontally averaging, denoted by an overbar,
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DENSITY CONTOURS:

contour range: 0.25 to 0.50, 75 contour levels
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Figure 2. The density profiles obtained at a fixed horizontal location are contoured in the
depth-time plane. Overturned isopycnals are apparent near t = 20 when the wave breaks.

gives an equation governing the production of density variance.

17 1 w - 2pw -__0 + p'D(p') (3)Tt azdz

The horizontally periodic boundary conditions have been taken into account in the derivation of
Eq. (3). The quantity Plo, is the horizontally averaged total density. The terms on the right hand
side of this equation can be thought of as forcing terms, producing density variance. Eq. (3)
states that density variance can be generated by advection across the vertical boundaries, buoy-
ancy flux, or diffusion. Similar equations can be derived for temperature variance or "turbulent"
kinetic energy. Indirect microstructure measurement techniques are based on approximate bal-
ances within these equations, which are assumed to be valid in the ocean interior when "ensem-
ble averaged" over many profiles. Here we focus on the behavior of Eq. (3), integrated over the
depth interval of interest, enclosing the critical level and the wave breaking region.

Figure 3 shows the volume integrated p,2 as a function of time. Note that its production is
strongly time dependent; there is no interval of time when Eq. (3) La.n be reasonably approxi-
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Figure 3. The upper solid curve is the volume integral of p' 2 . The dotted curve was obtained
by integrating the production terms on the right-hand side of Eq. (3) in time. The small resi-
dual between the two calculations is also shown.

mated as steady state. Note also that changes in density variance are not irreversible, density
variance increases rapidly and then decreases just as efficiently, with a relatively small residual
left behind when the calculation was terminated. Normally, when we think of mixing by an iso-
lated turbulent event, we think of a nearly irreversible process, with a localized mixed layer
perhaps eventually diffusing away, but only on very long time scales after the turbulence dies out.
It seems reasonable to conclude that the production of density variance is influenced, or even
dominated by, nonmixing processes. It is not clear how to use Eq. (3) to diagnose the mixing
associated with this event.

The role of the buoyancy flux

Further insight can be obtained regarding the temporal behavior of Eq. (3) by looking at the role
played by the buoyancy flux pw . Figure 4a shows the verticaly integrated buoyancy flux as a
function of time. The buoyancy flux shows strongly oscillatory behavior on a short time scale
approximately corresponding to the initial wave period. The magnitude of these oscillations can
be quite large, even causing the signal to oscillate sign. It appears obvious that there is a strong
wave component to the buoyancy flux. This is not too surprising, it would be reasonable to look
at this signal temporally averaged to remove the intrinsic wave oscillations. The broken curve is
a crude approxim,-tion of the time averaged signal. The averaged buoyancy flux is positive until
about t = 20, when the wave breaks. It then changes sign and remains negative throughout the
rest of the calculation.
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Figure 4. The volume integrated buoyancy flux is given by the solid curve in (a). The broken
curve is an estimate of the time averaged signal removing the wave oscillations. The integral
in time of the solid curve is given in (b).

Even the time averaged buoyancy flux is dominated by wave effects. As the wave approaches the
critical level, the initially undisplaced density field is disturbed. Fluid parcels are displaced away
from their equilibrium locations, resulting in a positive buoyancy flux. This process continues
until about t=20, the time of wave "breaking". Two processes occur after the wave breaks. On
the average, the displaced fluid parcels return towards their equilibrium positions, and some dif-
fusion occurs at small scales as they do so. Parcels returning towards equilibrium give rise to a
negative or counter-gradient buoyancy flux while diffusion results in mixing.

To illustrate the dominance of the wave effects on the density variance dynamics, we have
integrated the net buoyancy flux of Figure 4a with respect to time and shown the result in Figure
4b. The similarity between Figures 3 aad 4b implies that wave dynamics, through the buoyancy
flux term, plays the dominant role in the density variance equation. For this event at least, using
the density variance equation is not a particularly clean way to diagnose the mixing of the event.
In essence, we conclude that spatial averaging does not adequately separate mixing from nonmix-
ing processes. Loosely, we have not been able to separate "waves" from "turbulence".

DIRECT VIEW OF MIXING

We will now attempt to look at the mixing of the wave breaking event in a more direct manner.
We will exploit a simple and intuitive concept, namely that diapycnal mixing results in changes
in the volume of fluid found between a given pair of isopycnal surfaces. We can think of a
stratified fluid at some time to as a continuous distribution of isopycnal surfaces, along with an
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associated velocity field. By discretizing the density range, we can think in terms of a finite
number of these surfaces, each pair enclosing a finite volume of fluid. Suppose the fluid now
evolves, undergoing both diabatic and adiabatic processes. At some later time t I, the topology
of these surfaces may be extremely complicated. To diagnose the amount of mixing, however,
we are interested only in a single variable, the total volume of fluid between each pair. Figure 5a
shows a schematic of the density field of a fluid that evolves from a state of uniform density gra-
dient to a nonuniform, mixed state. Initially there is an equal volume in each of the density
"bins". Later the volume in the middle bin has increased at the expense of the neighboring bins.

Obviously, the volume between the isopycnal surfaces has a functional dependence on the density
field p(Z,t) .This dependence, however, is very different than the usual horizontal or temporal
averages we normally employ. Thinking of the total volume of fluid as a collection of fluid par-

(a)

1 mixing

2

(b)

F(p) F(p)

p p
Figure 5. A schematic of a density stratified fluid is given in (a). The density range has been
discretized into three "bins". Initially, the volume of fluid within each density bin is equal.
After a mixing event, the volume of fluid in the central bin has increased while the volumes of
the neighboring bins have decreased. Regarding the fluid as an ensemble of parcels, (b) shows
the probability F of a randomly selected parcel having a density value within a given bin. Ini-
tially, the probabilities are equal. Later, the probability of finding a value within the central
bin is greater. The function F depends on density but not on position.
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cels, each with a density and velocity value, we can denote the probability of a randomly selected
parcel having a density value of p as F (p). Figure 5b shows the probability distribution F of
the hypothetical density field of Figure 5a. Initially, there is an equal probability of occurrence
for all values while later it is much more probable that a given parcel will have a value near P2.
The main difference between this type of functional dependence on density and, say, the horizon-
tal average, is the lack of dependence on the vertical position of each parcel.

This simple idea can be incorporated into a straightforward algorithm for diagnosing mixing; at
least in numerical simulations. For a given discretization of the density range, the volume of
fluid can be computed directly for each pair of neighboring isopycnals. Each differential volume
can be "spread out" over a constant area A, yielding a differential thickness for each "bin". The
bins are then "stacked", with the densest fluid on the bottom at some fixed reference height, in
order of decreasing density. By keeping track of the thickness of each bin, the locations of the
edges of each bin are also determined. One can think of this algorithm as producing the
"pseudo-positions" z. of the given set of isopycnal values, i.e. a one-dimensional "sorted" den-
sity field which happens to be specified on an unevenly spaced grid.

Figure 6 shows contours of density in the (t, zs) plane. In the absence of mixing, these contours
would remain flat with a uniform vertical spacing. Deviations from flat isopycnals imply diapyc-
nal mixing. The net spreading of isopycnals near t = 20 and z. = 0.54 indicates the formation
of a mixed layer. This mixed layer is bordered, both above and below, by regions of net isopyc-
nal convergence where the background density gradient is enhanced. The lowest several isopyc-
nals remain approximately flat, implying a lower level across which there is no mixing.

AVAILABLE AND BACKGROUND POTENTIAL ENERGY

These same ideas can be formulated in terms of energetics using the concepts of available and
background potential energy. The concept of available potential energy has been discussed and
applied by many authors including Lombard (1989), Dillon (1984) and Holliday and McIntyre
(1981). The object is to define a one-dimensional "background" state for density that is insensi-
tive to adiabatic dynamics and compute the potential energy associated with it. Changes in the
background potential energy can then only occur through diffusive mixing. At some time t, the
potential energy of a flow, in dimensionless form, is given by

E,() = Ri JJfpkt)(z -z 0 )dV (4a)
V

where z 0 is an arbitrary reference location.

Let z, be the "pseudo-position" variable, defined by computing differential volumes, "sorting"
and "stacking", in the limit as the isopycnal spacing goes to zero. The background potential
energy Eb is simply the potential energy of the flow in pseudo-position space.

Eb(t) = Ri ffp,(0 z. -z 0 )dV (4b)
V
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Figure 6. Contours of density in the (t, z,) plane. Deviation from flat, regularly spaced con-
tours indicates diapycnal mixing of the fluid. The main feature is the region of strong isopyc-
nal spreading corresponding to the time and (true) position of the wave packet breaking near
the critical level. Regions of net isopycnal convergence are also evident.

It is clear from this definition that the background potential energy is independent of irue position
z , depenJing only upon the ordered position z, . For a given density value, z, remains con-
stant in time in the absence of mixing and can only change if mixing occurs.

The available potential energy Ea is defined as the total energy released by the flow in attaining
the sorted state adiabatically.

E,a(t) = Ri jjjpct)(z -z* )dV (4c)
V

Eqs. (4) define a unique decomposition of potential energy into available and background parts,
i.e. Ep=Ea+Eb .
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We denote the cumulative change in time of the background potential energy by
E,,x=Eb(t)- Eb(O). Ej. would seem to be a good indicatar of diffusive mixing in a

stratified fluid.

There are some subtleties, however. A volume must be specified over which the analysis will be
applied. For the present discussion, we will work in an Eulerian reference frame and specify a
fixed volume in space. It is instructive to take the time derivative of Eq. (4) to see how the poten-
tial energy in such a volume can change.

d
dt Ep = (z -zo)pw I + Ri Jffpw dV + JfJ(z -zo)D(p)dV (5)

v v

We immediately encounter a difficulty. The first term on the right hand side of Eq. (5) indicates
that the total potential energy changes as a result of net mass flux across the upper and lower
boundaries. Although the volume remains constant in an Eulerian framework, the mass is not
necessarily conserved within the volume. Care must be taken in interpreting a potential energy
budget of an open system in which the mass is changing.

Note that this difficulty arises in this problem because we choose to apply our energetics analysis
to only a small domain in which the wave breaking occurs. Had we used the entire computational
domain, we would have had boundary conditions on the top and bottom to impose. For some
boundary conditions, i.e. no slip wall conditions, the vertical velocity is zero, the mass flux terms
are zero, and there is no problem. Spectral methods, however, are commonly used for simulating
stratified turbulence and can create difficulties in analyzing potential energy even when the entire
domain is used. Often, periodic boundary conditions are specified for velocity and perturbation
density (from, say, a linear ambient profile) in all space directions. Such conditions are often
interpreted loosely as "waves that propagate out through one boundary propagate back in through
the paired boundary". Note, however, that this implies that parcels from near the bottom of the
domain can be interchanged with parcels from near the top by wavelike oscillations. In other
words, the tetal mass is not conserved and care must be used in quantifying the potential energy
of the flow.

In general, the analysis could be performed in isopycnal coordinates. For a volume bounded by
two isopycnals, across which no mixing occurs, both the volume and the mass remain constant.
If two such bounding isopycnals can be found, the analysis can, in principle, be performed
cleanly.

For our particular problem, however, we can compensate for the nonconservation of mass in one
of two ways. The cumulative changes in potential energy due to net mass flux can be computed
explicitly and the potential energy budget "corrected" for this effect. A second approach takes
into account the fact that the mass flux occurs primarily at the top boundary. The lower boundary
is located below the critical level, which prevents most of the wave energy from reaching it. The
difficulty, then, is the net interchange of parcels near the top boundary but inside V, with parcels
of slightly different density outside V. From Eq. (5) we see that the problem can be minimized
by selecting the reference location zo to coincide with the top boundary z2 . ExcliAnging par-
cels with different densities at exactly this level then results in no change in potential energy
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while exchanges of parcels near this value have only small effe ts. Either of these corrections are
adequate for our purposes here. We have chosen the second technique for the energetics balance
below.

Figure 7 shows the available and background potential energies as a function of time. The avail-
able potential energy behaves much like the net integrated buoyancy flux of Figure 4b. Ea
increases prior to wave breaking as parcels are displaced on the average, and decreases after the
wave breaks, as parcels return towards their equilibrium values. The background potential
energy, however, behaves quite differently. Prior to wave breaking, it remains approximately
constant as the flow contains no appreciable energy at the diffusive scales. After wave breaking,
the fluid mixes as small scale features diffuse while returning towards equilibrium.

8 I i i ITT
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time in buoyancy periods

Figure 7. The available potential energy Ea and the cumulative change to the background po-
tential energy E,,, are shown as functions of time. Ea increases initially as the packet pro-
pagates into the volume and displaces the stratification and decreases after wave breaking as
parcels return towards their equilibrium positions. The increase in E,g at later times indicates
that diffusive mixing takes place as the fluid restratifies.
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VERTICAL DIFFUSIVITY Kd

The function p(t,z*) is an interesting and useful quantity. We can think of it as "mean" density
field where the averaging operator filters out small-scale details of the flow, like the displace-
ments of fluid parcels due to internal wave motion, but retains the overall effects of small-scale
mixing. It is this sort of averaging that is implicit in the formulation of meso to large-scale circu-
lation models. In such models, internal waves and turbulence occur at scales much too small to
resolve, but the overall mixing accomplished by these motions must be incorporated in some
manner.

Earlier, we interpreted the spreading and convergence of the isopycnals in Figure 6 as a qualita-
tive indicator of diffusive mixing. We can also use p(t, z.) in a more quantitative manner by
computing the rate of spreading. Suppose we introduce a model evolution equation for the
"mean" density field.

a a~~* da
= z. ) az. az* (6)

Although the mean state changes as a result of complicated three-dimensional motions at small
scales, Eq. (6) collapses the net effect onto a single vertical diffusivity function Kd. Kd can be
computed directly from the mean density field and the overall character of the mixing event can
be examined with respect to pseudo-position z, and time.

2-P- (t, Z,'") dz.'
at

Kd(t,Z*) = a (7)

az,

Figure 8 shows contours of the (dimensionless) diffusivity function Kd. The main feature in the
figure is located near z, = 0.54 and t = 20, which corresponds to the time and place that the
strongest wave breaking occurred. The diffusivity is positive in this region, corresponding to
local spreading of isopycnals. This feature is responsible for most of the mixing of the event. It is
relatively brief in duration, lasting only about 5 buoyancy periods. After the main mixing event,
the diffusivity field becomes much more complicated, with both positive and negative features
appearing. The negative values correspond with the regions of converging isopycnals in Figure
6. Figure 9 shows the result of time averaging the diffusivity field.

MIXING EFFICIENCY

We define the mixing efficiency of the event y,,k as follows.

rate of increase of background potential energy (8)
rate of dissipation of kinetic energy
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Figure 8. Contours of the vertical diffusivity of mass Kd defined in Eq. (7). A strong positive
feature is seen to correspond with the initial region of wave breaking. At later times, the field
becomes more complicated with both positive and negative diffusivities appearing.

The rate of increase of background potential energy can be obtained by estimating the nearly con-
stant slope from Figure 7. The dissipation rate of kinetic energy, e is shown in Figure 10 along
with the rate of dissipat" n of density variance X. Taking a representative value of e over the
time period between t = 20 and t = 50, allows the ratio in Eq. (8) to be computed, yielding

y . 0.38. (9)
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0.60 Figure 9. The time averaged
profile of the diffusivity Kd.
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Perhaps not surprisingly, approximately the same value is obtained if the mixing efficiency is
defined as the ratio of representative values of X to e. We are encouraged that direct simula-
tions can produce mixing efficiencies near the expected value, but more study is required to deter-
mine the sensitivity of this result to changes in the sub-grid scale model.
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Figure 10. The dissipation rates of kinetic energy e and dehksity variance X.
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SUMMARY

We have examined the diapycnal mixing associated with a numerically simulated mixing event
similar to what may be seen in the ocean interior. A high resolution, three-dimensional primitive
equation model was used to simulate a wave packet breaking at a critical level. The temporal
behavior of the density variance equation was discussed in relation to the diagnosis of the mixing
of the event. The wave component of the buoyancy flux was shown to dominate the dynamics,
obscuring the diagnosis. A direct approach, based on the computation of fluid volume between
discrete isopycnal surfaces, was shown to be a less ambiguous indicator of the mixing dynamics.
The results of this calculation were used to estimate the vertical diffusivity of mass Kd. Cou-
pling this analysis with an energetiks budget based available and background components of
potential energy, a reasonably complete picture of the mixing dynamics emerges.
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ABSTRACT

Nonlinear interactions among internal gravity waves are investigated by direct numerical
experiments. In the first part of this paper, cases which solve the full (3D) Navier-Stokes
equations are compared to cases in which variability is suppressed in one horizontal direction.
It is found that the 3D and 2D simulations exhibit certain similarities. We find both in 3D and
in 2D that the transfer of kinetic energy (KE) from large to small scales is less efficient than the
transfer of potential energy (PE). The imbalance between these transfers leads to a characteristic
buoyancy flux spectrum which is negative (KE to PE) at large scales and positive (PE to KE)
at small scales. Integrated over all scales, the buoyancy flux is very small for a wide range of
flow regimes. However, results concerning buoyancy flux are sensitive to assumptions about
the manner of energetic forcing.

These sensitivities are taken up in the second part of the paper where energy is introduced
in a 'surface' layer and removed via a bottom absorption layer. It is found that it is kinetic
energy which is radiated down the fluid column and the mechanism for the radiation is the
divergence of the pressure-velocity correlation. For these cases, buoyancy flux in the radiated
region is on average negative. The buoyancy flux spectra, however, retain the same tendency
to become positive at the smallest scales.

Energy balances in the radiation region for both kinetic and potential energy are shown to be
qualitatively achieved between transport, buoyancy flux and dissipation terms without the need
to posit a 'mean shear' extraction term. Buoyancy flux is shown to be of the same order as
dissipation rate of kinetic or potential energy. Kinetic and potential energy dissipation rates
are about equal.

INTRODUCTION

The objectives of this study are to attempt to determine the role of nonlinear transfers in the
evolution of internal waves near dissipation scales. The first part of this work follows a paper
recently submitted; Ramsden and Holloway [19901 (hereafter RH) on statistically homogeneous
forced cases, so we will be mainly emphasizing the highlights of those investigations. The
second part of this study is on surface layer forcing. This work is new and still under active
investigation. In the spirit of 'Aha, we present the preliminary results.
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Part 1: STATISTICALLY HOMOGENEOUS FORCED CASES

The starting point for RH was to attempt to isolate the effects of nonlinearities in the evolution
of internal waves. In addition, they also wanted to consider the role of the zero frequency,
potential vorticity containing component of the motion field [Holloway, 1983], the so called
vortical mode [Muller et al., 1988]. Interaction of the vortical mode with the internal wave field
is not well understood. In particular, the role of nonlinear interactions in rearranging wave and
vortical energies at order 1-50 m scales is unknown. RH were also interested in determining
the effects of nonlinear interactions on other flow parameters such as buoyancy flux and what
effect restriction of the 3D motion field to vertical planar 2D would have.

There are two reasons to compare 2D results to 3D. The first is that it may be useful to run 2D
simulations because the range of accessible scales is greater for given computer capacity. If the
results are qualitatively similar to 3D, a great deal of time and effort can be saved by performing
2D simulations. The second reason is to ask what part(s) of the results from 2D theoretical
treatments of intemal waves may be applicable to the full 3D problem,

RH summarizes and follows up on numerical experiments reported in Shen and Holloway [1986]
(non-rotating statistically stationary 2D internal waves), Ramsden and Holloway [1987] (2D with
rotation), and Holloway and Ramsden [19881 (initial presentation of 3D results).

METHOD

The governing equations are the 3D nondimensionalized Navier-Stok-s equations under the
Bousinesq approximation;

0tu + u.Vu= -Vp - pe, + VV 2 u - 2fl x u + Fu (1)

0,p -IV + u Vp = KV 2p + Fp (2)

V. u = 0 (3)

In (1) to (3), u is velocity (U,V,W) on basis vectors (exey, e), V is the gradient operator, p
is pressure, p is the departure from a mean background gradient of density, T, V is kinematic
viscosity, ST is the earth's angular velocity, set to (0,0,f/2), Fu and Fp are external forcing,

and n is mass diffusivity. Time has been scaled such that the bv frequency N = g 2:p 1/2

p0 z)
(g gravity, P0 reference density) is unity. Vorticity is defined to be A=V x u. (1) to (3) are
the equations employed by Riley et al [19811 in the pioneering study of 3D stratified turbulence,
with the addition of rotation and forcing terms. Full details of the nondimensionalization may
be found in Riley et al.

Spatial derivatives are calculated by the spectral transform method after Orszag [1971] in which
each variable u, p, etc. is expressed as a truncated Fourier series, a procedure which implies
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periodic boundary conditions. On wavevectors k = (kr, ky, k,) denote the Fourier transform
of any field a(x) to be ak:

u(x) = Uke k'x (4)
k

p(x) = Zpke~k'x (5)

A centered leapfrog method with a Robert [19661 filter to suppress the leapfrog mode was
used to timestep the equations.

The 2D Analog

If the prognostic variables are subjected to the constraint that 0, = 0, the equations of motion
can be written:

Ot( + J(4',,) - fOU + Oyp = F + vV 2'( (6)

Otp + J(Ob.p) - Oy= Fp + t;V 2p (7)

Ot U + j(p, U) + fO ,= Fu + VV 2U (8)

With the planar velocities u= (V, W) given by streamfunction 4, V = -094, W = Ovo. Also,
C = A. e, = V2

0 and J is the nonlinear operator J(A, B) = OA. &OB - O RA 0,B. Forcing
takes the same form as the 3D simulations.

Notes on the Simulations: The Problem of Forcing

The 3D runs were performed at grid resolution 323 and the 2D simulations were performed at
1282. These modest resolutions were chosen in order to be able to obtain statistically stationarity
states and subsequent adequate averaging periods for a number of flow regimes. In both cases,
suites of experiments were performed at Kolmogorov dissipation scales chosen to be the smallest
resolvable scale 1/n where n is the number of grid points and the Kolmogorov scale is defined
as (v3/f) , where c is the kinetic energy dissipation rate per unit volume or area c = -vu.V 2u.
The Prandtl number P/n was unity for all cases.

So far, the form of the forcing has not been specified. The major problem is that due to limited
computer storage, the forced scales are not well separated from the (Kolmogorov) dissipation
scale. This will necessarily mean that results will be influenced by the form of the forcing. It
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would be desirable to introduce energy at GM levels, but the requisite scales are much larger
than those available to the model. At scales close to dissipation, there is some evidence for
velocity isotropy [Gargeu et al 19811. Also, Muller et al [1988 infer significant vortical mode
energy near dissipation (order lOm-Im) scales. For the purposes of this study, it was decided to
take as a constraint a maximum entropy principle where kinetic and potential energies are forced
in a 2:1 ratio (inviscid equipartition ratio) with all fields forced isotropically.

The forcing functions, F(k) were chosen to have energy spectra of

ElF(k)] = 0 (9)

(k1 + k0)6'

for both 3D and 2D kinetic and potential energies; ko was given the value 7.

F(k) = Av/k/(k 2 + 72)3 (for 3D) (10)

F(k) = Ak/(k 2 + 72)3 (for 2D) (11)

with A's amplitude factors. At each timestep in the running of the nodels, (10) and (11) were
multiplied by a random phase factor, ei , 0 < 0 < 27r. Kinetic and potential energy were
forced in a 2:1 energy ratio and a separate random phase was chosen at each timestep with the
proviso that the forcing of the 3D velocity field be nondivergent. The forcing function above
has a maximum at wavenumber 4. It provides the criteria of being large scale, isotropic and
forces KE:PE at energy equipartition rates. It also excites wave and vortical modes (see the
section on waves and vortices).

The basic range of the experiments covered ratios of nonlinear to linear timescales as characterized
by an r.m.s. turbulence Froude number (bv frequency, N, was unity) In 3D this is defined

as (V) + (b)2' In the 2D simulations, Froude number is defined as (_)2, the
achievement of a particular Froude number meant adjusting A and P until statistically stationary
states at the desired Froude numbers and Kolmogorov scales were reached whereupon time
integrations of many Brunt-Vaisala periods were performed in order to calculate average statistics.

Figure la shows instantaneous density slices from 3D simulations at r.m.s. turbulence Froude
numbers of 0.1, 0.3, 1 and 3. Figure lb shows the same Froude numbers for 2D. These 4 cases
are chosen to span the flow regimes likely to be encountered in the ocean, from weakly wavelike
to strongly overturning. The cases presented in Figure 1 are without rotation. It may be seen from
Figure 1 that overturning has begun by an r.m.s Froude number of about 1 for both 2D and 3D.

Table 1 gives some of the relevant parameters for the runs shown in Figure 1. The weaknesses
of the direct simulations are seen in that for the 3D cases, the Reynold's numbers lull/v based
on the Taylor microscale
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Figure la: Instantaneous density slices for (left to right, top to bottom), r.m.s. turbulence Froude
numbers (Fr) of 0.1, 0.3, 1 and 3 for the 3D cases, all with f=0

1= V u (12)

are around 15-25. Any other measure of turbulent 'activity' indicates a highly viscous regime.
Box sizes are small wi'-, ll simulations near dissipation scales. On the other hand, the small flow
domain justifies the usr of a constant background gradient of density. Highly turbulent patches
in a stratified enviroinment are f, quently of vertical size 10 m or less (e.g. Mown [19891). Also,
the measure of kinetic energy residence time Al'/f for the 3D Froude number I case is around
0.33 bv, which compares favorably witu oceanic turbulence measurements [Crawford, 1987].
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Figure lb: Same as Figure la for 2D cases.

Table 1. Reynold's numbers and box sizes for the basic simulations

Froude 3D Reynold's
number number 3D box size (m) 2D box size (m)

0.1 27.6 4.0 16.0
0.3 23.0 2.4 11.2
1 16.6 1.3 5.3
3 16.8 0.75 3.0
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Nonlinear Energy Transfers

For the 3D dynamics, the nonlinear transfer of kinetic and potential energies can be expressed
in the Fourier domain as:

OtK.E(kh,kz) = u; .(A x (13)

and
OtPE(kh, k,) = -p;(u'Vp)k (14)

where * denotes complex conjugation and the transfers are collected as functions of horizontal
and vertical wavenumbers kh and k... This formulation is helpful in revealing details of the
nonlinear processes.

In 2D, the nonlinear transfer rates can be written in the Fourier domain as:

OCKE(ky,k.) = VVA{J(¢',O)}k - U;{J(',U)}k (15)

and

OiPE(ky,k,) = -P{(',P)}k (16)

where the horizontal wavenumber is now ky.

By averaging over many buoyancy periods, the energy transfer rates have been calculated.
Figure 2 shows contours of these energy transfer rates for the case of Froude number 1. The
3D nonlinear transfer rates are contoured as a function of horizontal and vertical wavenumber,
kh and k. and the 2D as a function of ky and k. Areas which are losing energy due to nonlinear
interactions have dashed contours and areas which are receiving energy have solid contours.
The contour increments are logarithmic with a minimum energy cutoff of 1.0x 0 - 3 times the
maximum value. In order to emphasize those wavenumbers which are contributing significantly
to the overall energy transfer, areas which receive/lose more than 10% of the maximum energy
transfer rate are shaded.

For the 2D case, the kinetic energy may be divided into two parts, one which will be called
planar' ('KeP'= Z k2I~ 2) and the 'cross' energy ('KeC'= U12). PE is simply Z IpI2.

k k k
In Figure 2, both planar and U energy transfer rates are combined, hence it does not resemble
a classical 2D energy transfer shape. For 3D, the distribution of KE and PE transfers are
of similar shape and magnitude. For 2D, KE and PE distributions have somewhat dissimilar
shapes, but the rates are again of comparable magnitude even though there is about twice as
much kinetic energy as potential for all cases. The transfer of kinetic energy to small scales
relative to potential energy appears suppressed in both 3D and 2D. A tentative exploration into
the reasons for the similarity in net nonlinear transfer rates between 3D and 2D is presented
in the section on Waves and Vortices.
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Figure 2: The net sums of p-itential (top) and kinetic (bottom) nonlinear transfers of energy for
3D (left) and 2D (right) both at a Froude number of 1 plotted versus horizontal and vertical
wavenumbers. The logarithmic contour increments for Figures 2 and 4 are 0.71 x 10-4 for the
3D and 0.11 x 10-4 for the 2D with energy loss denoted by dashed contours and energy gain
denoted by solid contours. The maximum transfe~r rates are 0.22x 10- 3 and 0.33x 10- 4 for 3D

and 2D respectively. Areas which receive or lose more than 10% of the maximum are shaded.

Figure 3 shows the resultant energy spectra. The 3 cases presented are (Fr=0.3,f=0), (Fr=l, f=O)
and (Fr=l,f=0.1). The 3D spectra are kinetic energy and twice potential energy. The 2D spectra
are planar and cross kinetic energy and potential energy. For the 2D nonrotating cases, PE
and planar KE would overlay exactly for a linear internal wave regime in energy equipartition.
The departure from equipartition due to the nonlinear transfers is seen for the Froude number
1 case. The effect of rotation is to bring the 2D planar and U energy together with PE still
greater than planar KE at the smallest scales.
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Figure 3: The 3D (top) and 2D (bottom) energy spectra for (left to right) Fr=0.3 f=O, Fr=-l,
f=O and Fr-l, f=O.l plotted versus total wavenumber. The 3D cases show kinetic (solid) and

twice potential (dashed) energies. The 2D show planar (solid) and U (dashed) kinetic and
potential ("Pe": dotted) energies.

For all the 3D cases, the tendency to produce an excess of potential energy relative to kinetic
energy at the smallest scales (>1:2) is clearly seen with rotation having no discernible effect.
For both 3D and 2D, the tendency is therefore to produce an excess of potential energy relative
to kinetic energy at the smallest scales. For all cases shown in Figure 3, the low wavenumber
regions have excesses of kinetic energy relative to potential energy. Herring et al [1982] have
seen similar implications for eddy Prandtl numbers in closure models of passive scalar advection.

Figure 4 shows the buoyancy flux cross spectrum - (p* 11'k) for the same case shown in Figure
2. Time-averaged contours of this quantity are presented in the same manner as Figure 2. In
both 3D and 2D, the shape of the time averaged buoyancy flux contours are negative (KE to
PE conversion) at large scales and positive (PE to KE conversion) at small scales near the
k, = 0 axis. This shape can be interpreted as a direct result of the non-equipartition spectra
seen in Figure 3.
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Figure 4: The buoyancy flux cross spectra from the same cases as Figure 2. The logarithmic

contour increment for 3D (left) is 0.14x 10- 4 with a maximum of 0.44x 10- 4 and for 2D the

increment is 0.32x 10- 5 with a maximum of 0.lOx 10- -4 .

Figure 5 shows that all 3D cases have buoyancy spectra with this shape except for the weakest
flow regime. Shen and Holloway [1986] show similar results for 2D which can also be inferred
from Figure 4. Holloway [19881 has shown 2D spectral closure theory and simulations which
take as the force term for buoyancy flux the difference between kinetic and potential energy.
These yield buoyancy flux spectra not unlike those of Figure 5.

On Figure 5, the Thorpe [1977] overturning and buoyancy (V/7Ny) scales have been marked
where possible. Where a buoyancy scale has not been marked, it is at a scale less than
the smallest available to the model. Since we have not defined 'patches' of overturning as
observationalists would do, we have estimated the largest (Thorpe) scales of overturning as three
times the calculated Thorpe scales. It is seen from Figure 5 that scales of mixing (negative
buoyancy flux) are larger than either the Thorpe or buoyancy (where turbulence begins to
dominate buoyancy) scales. The implication of this is that 'mixing' does not occur where
overturning occurs, rather it occurs at the larger scales. Restratification appears to be happening
at overturning scales. Kraig Winters critically addressed issues about the interpretation of mixing
showing that a reordering of the p profile may be necessary to diagnose mixing. The reader
should consider results described in the present paper from the view of Winters [1991].

Table 2 shows the time averaged net buoyancy fluxes, standard deviation of same and kinetic
energy dissipation rate for the full range of 3D and 2D cases shown in Figure 1. As Table 2
shows, net buoyancy fluxes are on average not significantly different from zero for most 3D and
2D cases with or without rotation for these forcing ratios.

Only at a Froude number significantly greater than unity is there net negative buoyancy flux
(destratification). Small amounts of overturning at a Froude number of I are not sufficient to
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Table 2. Average net buoyancy fluxes and KE dissipation rates. All have f=0 unless noted.

3D 2D
Froude buoyancy Standard buoyancy Standard
number flux deviation C flux deviation C

0.1 0.19 e-5 0.14 e-4 0.19 e-4 -0.25 e-6 0.14 e-4 0.13 3-5
0.3 0.15 e-4 -0.11 e-3 0.56 e-3 0.62 e-5 0.12 e-3 0.24 e-4
1 -0.47 e-4 0.11 e-2 0.25 e-1 0.15 e-3 0.16 e-2 0.16 e-2
1, f=0.1 -0.64 e-4 0.11 e-2 0.26 e-1 0.29 e-4 0.16 e-2 0.17 e-2
3 -0.20 e-1 0.13 e-i 0.73 -0.33 e-1 0.37 e-1 0.11

Fr *1

Fr .1 Fr 3

\ I \

A

/ I I'I

Fr =1. Fr=3.

Th Th  B
k k

Figure 5: The 3D buoyancy flux cross spectra plotted versus total (solid), horizontal (dashed)

and vertical (dot-dash) wavenumber for the 4 Froude number cases. The Thorpe and buoyancy

scales are marked where possible.
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cause net destratification in either 3D or 2D. A scaling of buoyancy flux from dissipation rate
(plwl = 0.2c, see Osborne and Cox [1972]) is only possible for one of the cases shown in
Table 2 (2D, Froude number 3.). Obviously, the results are dependent on the ratio of forcing
of KE:PE. Mourn [1989] has reported directly measured values from overturning patches of
p'co' = 50 W m-2; 0.2c = 420 W m-2. Mourn cautions against taking these values too literally,
but they are like the average values seen in the simulations using the energy equipartition
rates of forcing.

The tendency to produce positive buoyancy fluxes at the high wavenumber end of an inertial
subrange is very robust to the form of forcing. Holloway and Rarnsden [1988] show a case
without rotation which was run with forcing of kinetic energy only with correspondingly large
negative net buoyancy fluxes. Even though the forced scales are very close to the Kolmogorov
scale, a positive buoyancy flux 'tail' was observed. Other examples of this robustness are
given in the same paper.

WAVES AND VORTICES

An attempt has been made to understand why 3D kinetic energy transfer is suppressed relative
to potential energy by separating nonlinear transfers into component pans, viz: if all nonlinear,
dissipative, and forcing terms are omitted from the 3D equations of motion then the ideal
linearized model equations become

kk
0tUk = iT~[ lkzPk - f(kVk - kYUk)] - Pkez + f(Vkex - Ukey) (17)

Ot Pk = - Wk (18)

The resultant system of equations (details may be found in RH) has eigenvalues zero and
±/k2 + f 2k2 with corresponding cigenvectors

a+ = -c 1 va (19)
a_ -c -d 1 Pk

with c = f L, d = tvrl _+6 and vc, va are velocity components orthogonal to k. The
ao is the nonpropagating vortical mode and a+ are wave modes propagating at frequencies

:N k2 + f 2 k. The 2D system possesses a similar set of solutions.

Note that the right hand sides of equations (13) and (14) are the product of three quantities, each
of which is the sum of waves and vortices. Eight contributions to the net nonlinear transfers are
thus possible. These are denoted by, e.g., W-W-V where the interaction of waves and vortices is
projected onto the wave component of the flow field. V-W-W would be wave-wave interactions
projected onto the vortical part of the flow field. The 2D has a similar decomposition.
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Examination of these transfer components have shown that for the 3D case the forward transfer
of potential energy to small scales is matched by a corresponding kinetic energy transfer mode
with the following notable exception. Figure 6 shows the kinetic and potential energy W-W-W
interactions for both 3D and 2D to the same scale as Figure 2. This transfer mode appears to
be the key player in the suppression of 3D KE transfers (at least for wave energy). The rate
of energy transfer is much greater for potential energy than kinetic energy for both 3D and
2D and the shapes are the same, too. The point of this section is to isolate in some degree
where the suppression of KE transfer relative to PE transfer is occurring and to reemphasize
the similarity of 3D and 2D results.

3D 2D

__'° ____._________'°'° 0
11.0- 40.0

kz PE

6.0- \ 21.0 -/

1.0 2.0
1.0 6.0 11.0 2.0 21.0 40.0 59.0

59.0-

11.0 N\ ~40.0 -

kz , KE

.02.0

1.0 6.0 11.0 2.0 21.0 40.0 59.0
kh ky

Figure 6: The W-W-W transfer component potential (top) and kinetic (bottom) energy transfers
for 3D (left) and 2D (right) plotted versus vertical and horizontal wavenumbers. The scaling

is as Figure 2.
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CONCLUSIONS TO Part 1

The nonlinear transfer of kinetic and potential energy in an internal wave regime near dissipation
scales has been investigated by direct numerical simulations. Two cases were considered, one
which solves the full 3D Navier-Stokes equations and another which restricts the motion field
to a vertical 2D plane. It was found that the rate of transfer of kinetic energy is less than that
of potential energy for both 3D and 2D and the net transfer rates have similar spectral shapes.
Although suppression of the 2D kinetic energy transfer is explained by the energy/enstrophy
conservation restraint, the reason for KE suppression in 3D is not well understood.

The difference of transfer rate of KE and PE creates an imbalance in the relative amounts
of kinetic and potential energies at different scales, more PE at small scales and more KE
at the larger scales. The relative excesses of energy in turn drive a characteristic buoyancy
flux spectrum, negative at large scales and positive at small scales, with the results from 2D
resembling those of 3D. The tendency to produce a relative excess of potential energy at the
high wavenumber end of an inertial range, resulting in positive (restratifying) buoyancy fluxes,
is robust to the form of the forcing.

Rotation up to f=O.1 slightly alters the form of the 2D energy spectra but does not significantly
affect the differential transfer rates leading to the buoyancy flux measurements. Rotation to f=0.1
has little effect on the 3D results due to the short energy residence times.

Net buoyancy fluxes are on average zero exccpt at Froude numbers much larger than 1. There is
little net mixing in a marginally overturning environment, either in 3D or 2D. An Osborne-Cox
scaling to derive buoyancy flux from kinetic energy dissipation rates appears to be only possible
in the most active of turbulent patches for the forcing ratios used here.

It may seem surprising that 2D dynamics resemble so nearly the full 3D regime with respect to
the nonlinear behavior of internal waves near dissipation scales. It is encouraging to think that
cost-effective numerical experiments in 2D may be relevant to real-world applications.

Part 2: SURFACE LAYER FORCING

One may criticize Part 1 apart from the extremely limited flow domain. Energy 'appears' by
application of fictitious body forces which are intended to represent interactions with scales
larger than the resolvable domain. Energy introduced at internal wave equipartition levels is

moved to different scales by nonlinear processes, but no energy is created or destroyed by this
process. Hence, it is perhaps not unexpected that the observed net buoyancy fluxes were small.

Holloway, [1988], [1989] has raised the issue that presumptions about gradient production and
dissipation rates such as that of Osborne and Cox [1972] may be on shaky theoretical grounds.
In order to gain insight into the relative strengths of terms in the Navier-Stokes equations, we
have attempted to measure them in a simulation domain with a vertical flow of energy.
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METHOD

'The 2D simulation code used in Part I has been modified to have a free slip, rigid lid condition
on ?p and p at grid resolution 128*256 (and preliminary 128*512). The forcing function has
been masked by

M(z)=e(Az) ;- 7r < z < 0 (20)

where the simulation domain is -r < z < 0. At each timestep, V) and p have been multiplied
by a bottom absorption taper function

T(z)= - C:1 - (10[i + -r < z < -0.97r (21)

with C a constant.

In this way, it was attempted to define an 'energy radiation' region between the forced region
and the sponge region which mimics the passage of energy down the fluid column. To simplify
the energetics, the 'cross' velocity field has been eliminated (no rotation). Figures 7a and 7b
show instantaneous snapshots of stream function, density and kinetic+potential energy density
for one of the cases. It is seen that energy is concentrated in the 'surface' layer.

ap
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...... .. . . ........ ... ...

Figure7a: I *"~'::.°../
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Figur 7a:Instantaneous snapshots of (left) stream function and (right) total density for a
surface layer forced run.

Figure 8 shows vertical profiles of kinetic and potential energy and energy dissipation rates. It
is seen that the presence of the sponge region creates gradients near the bottom which tend to
enhance the dissipation rates, and there is probably some reflection of energy from the bottom.
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Forced Region

Figure 7b: Kinetic + potential energy density
for the same case as Figure 7a.
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Figure 8: Time and horizontally averaged vertical profiles of (left) kinetic (solid) and potential
(dotted) energy and (right) dissipation rates of kinetic (solid) and potential (dotted) energy.

Figure 9 shows energy spectra tor the area away from the forced and sponged region only and a
vertical profile of Froude number. The reduced area spectra indicate that there is more KE than
PE away from the surface layer. This conclusion is supported by Figure 10, a vertical profile
of buoyancy flux and a spectrum of buoyancy flux away from the mixed layer. For this case
the net buoyancy flux is clearly negative in the radiation region but the spectrum is showing the
tendency to develop a positive 'tail' as was seen in the homogeneously forced cases.

Nonlinear Energy Radiation Terms

In the radiation region, what are the sources and sinks of energy? We have attempted to answer
this question by determining an energy balance in the non-forced region. From equation (1)

O,(u 2 /2) = V . (up + uu2/2) - pW - c (22)
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Figure 9: (left) Time averaged kinetic (solid) and potential (dashed) energy spectra plotted versus
total wavenumber for radiation region only: (right) vertical profile of Froude number.
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Figure 10: (left) Time and horizontally averaged profile of buoyancy flux; (right) time averaged

buoyancy flux spectra from the radiation region plotted versus total wavenumber.

The nonlinear terms are composed of a divergence of a pressure-u correlation which we denote
as 'up' and a turbulent flux term which we denote as 'tf'. The pW is minus buoyancy flux and
c is kinetic energy dissipation rate. From equation (2)

Ot (p2/2) = V. (up/2) + pW -X (23)

where X is potential energy dissipation rate and we will denote the nonlinear term as 'n'.
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Assuming that stationarity has been reached and the at terms can be dropped, which of the
remaining terms in equations (22) and (23) are dominant? Figure 11 left shows vertical profiles
of time and horizontally averaged 'nl', 'up' and 'tf' and Figure 11 right shows sums of terms
for KE and PE. Clearly, it is the divergence of the pressure-u correlation which carries (kinetic)
energy down the water column. Figure 11 fight indicates a qualitative balance between nonlinear
production, buoyancy flux and dissipation in the radiation region for both kinetic and potential
energy (forcing and sponge region effects were not factored into the balances).

At level z=-7r/2 in the radiation region, the average values of balance terms for two r.m.s Froude
numbers are presented in Tables 3a and 3b. Table 3b indicates that the major source of potential
energy in the radiation region is the buoyancy flux and the nonlinear term tends to remove
potential energy. Table 3a and 3b indicate that buoyancy flux is of comparable magnitude to
c or X (which are about equal).

tf V. (uu2/2) n1+ pW- = 0?
up V.(up) tf + up -pW-E= 0?

n7= V. (up2 /2)
1.00- 1.0'

0.75. PE :

0.75KE

0.50 tf t-up 0.50-

0.25 0.25-

0.00, < , 0.00 , ,
-15.0 -10.0 -5.0 0.0 5.0 10.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0*10-5 $10-4

Figure 11: (left) Time averaged profiles of divergence of pressure-u correlation (solid), uu2/2
(dotted, not visible) and up2/2 (dasled). (Right) Time and horizontally averaged profiles of kinetic
(solid) and potential (dotted) energy balance sums along with the terms which go into the sums.

CONCLUSIONS TO Part 2

For the cases studied here, energy from the surface forced layer moves down the fluid column
by the pressure-u correlation. The turbulent flux term in the equations of motion is negligible
compared to the divergence of the pressure-u correlation. The kinetic energy supplied to the
fluid interior is balanced by dissipation and conversion to potential energy via buoyancy flux.
The buoyancy flux is hence on average negative in the radiation region, but the spectrum
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Table 3a. Kinetic energy balance terms.

Froude number up tf b*w e sum

0.05 0.17 e-4 -0.46 e-10 -0.74 e-5 -0.11 e-4 -0.165 e-5
0.15 0.44 e-4 -0.93 e-8 -0.22 e-4 -0.13 e-4 0.85 e-5

Table 3b. Potential energy balance terms

Froude number nl .b*w X sum

0.05 .0.24 e-7 0.74 e-5 -0.84 e-5 -0.11 e-5
0.15 .0.18 e-5 0.22 e-4 -0.15 e-4 0.51 e-5

shows the same qualitative behavior (negative at large scales, positive at small scales) as the
statistically homogeneous forced cases.

The major source of potential energy in the fluid interior is the buoyancy flux and it is roughly
balanced by dissipation and (relatively small) vertical nonlinear transfer. Taken together, Parts 1
and 2 indicate the hazard of scaling buoyancy flux rates from Qissipation rates. Indication is that
net buoyancy flux occurs during times in which energy is 'filling' a region. When energy levels
reach sufficient magnitude to cause a dissipation 'event', there may be very little net gradient
flux associated with it, but this may have little to do with 'mixing' (again Winters [1991]).
Future %,.ork will concern attempting to extend the parameter range to higher Froude number
radiation regions and completing runs at the higher resolution (larger radiation region).
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LARGE-EDDY SIMULATION OF INTERNAL WAVE MOTIONS

DAVID A. SIEGEL
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ABSTRACT

Large-eddy simulation (LES) techniques are used to numeically investigate the motions and mixing
processes of the oceanic internal wave field. LES's solve the three-dimensional, nonlinear, time
dependent Navier-Stokes equations for the resolved scales of motion while parameterizing the effects
of the unresolved subgrid scales. This allows oceanographically relevant length and time scales to be
numerically simulated using present-day supercomputers.

Here, the results (some preliminary) of two recent LES experiments of stably-stratified ocean
turbulence are presented. The first experiment is the study of the decay of stably-stratified turbulence
at oceanographically relevant length and time scales. The initial wavenumber distribution is consistent
with the Garrett-Munk (GM) internal wave spectrum extrapolated to scales smaller than 10 m. This
experiment clearly shows many features of the so-called "turbulent collapse" (i.e., the transition from a
fully turbulent flow to an internal wave dominated field). However, the present results illustrate
several important differences from previous laboratory and direct numerical results. In particular,
highly anisotropic, "pancake" structures are not formed coincident with the onset of the turbulent
collapse. We hypothesize that the lack of two-dimensionalization of the kinetic energy structures is
due to the relatively large Reynolds numbers of the LES experiments and suggest that the results of
laboratory and direct numerical experiments be cautiously applied to the internal wave field.

The second experiment is a preliminary attempt to use LES techniques to directly determine values of
vertical eddy diffusivities for steady thermocline motions. The Navier-Stokes equations are forced to
maintain constant energy, consistent with GM amplitudes, for the lowest resolved wave modes (50
m). The phases of the forced wave mode are determined dynamically by solving the equations of
motion. The long time integration ( 30 Nt) and steady forcing enables the domain averag( i buoyancy
flux and hence, the vertical eddy diffusivity (KBF) to be determined directly. Values of KBF are
consistent with oceanographic inferences (6x10 "6 to 6x 10-4 M2 s-1) although their dependency upon
the buoyancy frequency is quite anomalous (going as N+2!!). This anomalous dependency is thought
to be caused by the nature of the numerical forcing. The direct determinations of KBF are compared
with several indirect turbulent variance dissipation rate estimates. The forced LES experimental results
are preliminary as many detailed analyses still need to be performed.

MODELING THE OCEANIC INTERNAL WAVE FIELD

A variety of scientific questions may be addressed using "data" obtained from the numerical
simulation of the ocean's internal wave field. For instance, important parameters that are very difficult
to directly measure in situ, such as diapycnal and isopycnal eddy diffusivities, may be directly
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determined numerically. This would enable parametric dependencies to be directly investigated.
Diapycnal eddy diffusivities for active (temperature and salinity) and passive (tracer) scalars may be
compared to examine the importance of buoyancy on the mixing of scalars. Similarly, the parametric
dependence of turbulent variance dissipation rates can be evaluated. In addition, the consistency of the
linear internal gravity wave dispersion relation with the simulated "data" may be evaluated. Knowing
the spatial structure and temporal evolution of the internal wave field, the potential of many
oceanographic applications may be evaluated. For example, the effects of internal wave motions upon
the transmission of acoustic signals can be determined using simulated "data" (e.g., T. Ewart, this
volume). The sampling characteristics of oceanographic instrumentation may also be evaluated (e.g.,
Ledwell and Watson, 1991; Siegel and Plueddemann, 1991).

The point is that all of the above scientific questions and technical needs require "data" from the
internal wave field that are difficult to obtain from current observational techniques. Here, we
illustrate the application of large-eddy simulation (LES) techniques to the oceanic internal wave field as
a method for supplementing our present observational tool set. The idea is to use in situ observations
of the internal wave field to drive a LES model in order to calculate those properties which are difficult
to obtain observationally (such as, eddy diffusivities or dissipation rates). This approach has proven
to be quite successful in studies of the atmospheric boundary layer (e.g., Deardorff, 1973; Wyngaard,
1984; Ebert et al., 1989).

In order to realistically simulate the internal wave field, several rather stringent requiremerts must be
satisfied. First, it is anticipated that the motions of the internal wave field are fully three-dimensional
and must be modeled that way. Second, characteristic nondimensional numbers (cf., Reynolds,
Froude and Rossby) are important and must be correctly considered in any investigation. Third,
relevant spatial scales range from 10's of cm's to many 100 m's, while temporal scales range from
minutes to days (e.g., Garrett and Munk, 1972; 1975; Munk, 1981; Gargett et al., 1981; 1984).
Fourth, the internal wave field is comprised not only of linear internal waves, but also many turbulent
and vortical motions (e.g., Holloway, 1983; Mtller et al., 1986; MUller, 1988). Thus, the full suite of
allowable motions must be included. The most straightforward way to insure that these requirements
are met is to directly solve the Navier-Stokes cquations for the proper time and space scales.

Unfortunately, computational resources are finite. Only a limited number of spatial modes can be
numerically simulated using present-day supercomputers (0(100) in each direction). This puts rather
severe restrictions on the spatial domain that one can investigate by directly solving the Navier-Stokes
equations. When directly solving the Navier-Stokes equations, all scales relevant to the transport and
dissipation of energy must be explicitly resolved. The bandwidth of required spatial scales is
described by the Reynolds number (e.g., Tennekes and Lumley, 1972). For the oceanic internal wave
field, Reynolds numbers (u'h/v; where v is the kinematic viscosity = 10-6 m2 s-1) based upon a 1 m
overturning length scale (h) and a velocity scale (u') of 0.1 m s-1 are O(105). This indicates that
molecular processes are not directly relevant to the internal wave field's evolution. Values of the
Reynolds number (Rex) based upon the Tay.or length scale (X=u'/(Du/Dx)' for an isotropic field) are
often used for comparing dissimilar approaches of studying turbulence (e.g., Lesieur, 1987). For the
oceanic internal wave field, values of Rex are 0(105) (,sing u'=0.1 m s-1 and UE3=10 "8 112 s3).
However for laboratory and direct numerical simulations of stably-stratified turbulence, reported
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values of Rex are always less than 100 (e.g., Riley et al., 1981; Stillinger et al., 1983; Itsweire et al.,
1986; Holloway and Ramsden, 1988; Mdtais and Herring, 1989; Lienhard and Van Atta, 1990;
Ramsden and Holloway, 1991). Thus, it is clear that both laboratory and direct numerical
investigations can not adequately simulate the oceanic internal wave field. This is not to say that these
experiments have not given v,able insights into the innerworkings of stably-stratified turbulence,
just that they cannot realistically simulate the ocean's internal gravity wave field.

SIMULATING THE LARGE EDDIES

To get around the finite resolution afforded by present computational resources, we apply the large-
eddy approximation (e.g., Deardorff, 1970; 1973; Schumann, 1975; Ferziger, 1983; Wyngaard,
1984; Rogallo and Moin, 1984; Lesieur, 1987). In a large-eddy simulation (LES), the large, or grid
scale (GS), motions are directly simulated while the effects of the subgrid scales (SGS) are
parameterized in terms of the GS. Most importantly, the modeling of the SOS processes allows
oceanographically relevant Reynolds numbers to be simulated in a numerically achievable wavespace.
The application of the large-eddy approximation means that the GS motions contain the energy of the
flow and perform the mixing (that is, support a buoyancy flux), while the SGS eddies act to dissipate
energy as part of the turbulent cascade. This separation of the dynamical roles of the GS and SGS
motions provides a useful means of examining the consistency of a LES. That is, GS energy levels
should be much greater than the SOS, while the GS dissipation rates must be much smaller than the
SGS rates of dissipation. These simple concepts are helpful for evaluating LES model performance.

In a LES, the cutoff scale between GS and SGS motions is generally made within the inertial
subrange of turbulence. This is done for two reasons. First, motions at these spatial scales should be
locally isotropic. Second, the rate at which kinetic (KE) and potential (PE) energies are transferred
across the SGS cutoff must be equal to the rate at which they are dissipated by molecular processes
(the KE and PE dissipation rates, eKE and epo. These facts make the parameterization of SGS
processes simpler than second moment turbulence closures which must hold over all scales of motion.

It is important to recognize that the essential difference between a large-eddy simulation and a direct
simulation of any turbulent flow is the development of a parameterization for the effects of the SOS
processes in terms of the resolved scale dynamics. In some sense, the degree that the large-eddy
simulation conforms to its intended reality is a function of how well the SOS parameterization
performs its task. This suggests that one must carefully choose a SG3 parameterization method.
Unfortunately, there have been very few comparison studies of SGS model performance (e.g., Clark
et al., 1979; Schumann, 1991). However, these results, as well as some reported here, indicate that
the choice of SGS models makes little difference to the resolved scale energetics. This result is not
really unexpected as the GS cutoff is made within the inertial subrange of turbulence and the SOS
motions have "forgotten" the orientation of the GS motions that are driving them. This means that a
simple statistical accounting of the GS energy sink due to SGS energy cascade, such as by a uniform
eddy viswosty, may be enough to successfully simulate the large scale motions (e.g., Lesicur, 1987).

LES techniques have long been applied to atmospheric science and engineering problems (e.g.,
Deardorff, 1970; 1973; 1980; Schumann, 1975; 1991; Ferziger, 1983; Wyngaard, 1984; Rogallo and
Moin, 1984; Moeng, 1984; Eidson, 1985; Lesieur, 1987; Moeng and Wyngaard, 1988; Schmidt and
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Schumann, 1989; Mason and Derbyshire, 1990). However, they have only been recently applied to
oceanographic flows (e.g., Siegel, 1988; 1991; Gallacher, 1990; McWilliams et al., 1990; Siegel and
Domaradzki, 1991a; 199 1b). One should note that the modeling of SGS processes is similar in spirit
to the parameterization of SGS processes in eddy-resolving oceanic general circulation models (e.g.,
Holland and Lin, 1975). The major difference is that more is known about the dynamics of 3-D,
locally isotropic turbulence than about submesoscale (O(1-10 kin)) ocean motions.

Here, we will illustrate the development of a LES model and its application for investigating the
interactions among internal gravity waves and turbulence within the thermocline. One of our goals is
to use LES techniques as a predictive tool for evaluating the magnitude and parametric dependence of
diapycnal and isopycnal eddy diffusivities for use in regional and global scale ocean circulation
models. Here, we will describe the results of two LES experiments. The first experiment describes
the decay of stably-stratified turbulence at oceanic space and time scales, while the second applies a
LES model to directly determine values of the diapycnal eddy diffusivity. This work is preliminary,
but clearly illustrates a "proof of concept".

DEVELOPMENT OF A LES MODEL FOR THE INTERNAL WAVE FIELD

The motions of the resolved scale eddies are determined by solving the 3-D Navier-Stokes equations
for an incompressible fluid, satisfying the Boussinesq approximation, where temperature is the active
scalar. Using these assumptions, the equations of motion are

aui - ' - aP + agd-3T + n u +
at = x " XOi aXjaxj + Fi(a

= - Tu- dTs ___'
- u3 x + k + FT (lb)

i = 0 (1c)

where t is time, xi is the spatial vector (x; xl,x2,x3; x,y,z), ui is the velocity vector (u; ul,u2,u3;
u,v,w), p is the pressure perturbation from the hydrostatic balance (normalized by the mean density),
T is the perturbation temperature from the horizontal mean temperature (T,(x3)), which describes the
stable background profile), g is the magnitude of the vertical gravitational acceleration (9.8 m s-2), a is
the coefficient of thermal expansion (0.025 K-1), n is the kinematic viscosity (10-6 m2 s-1), and k is
the thermal conductivity (10-6 m2 s1 ), di3 is the Kronecker-delta function and Fi and FT represent
external forcing functions. The degree of stable stratification is characterized by the buoyancy
frequency, N, which is equal to

dTs 1l/2

N=(cg 8B _(2)

The domain is a triply-periodic cube with 5ides of length, L. The boundary conditions are

ui(xj) = ui(xj+nL) (3a)

T(xj) = T(xj+nL) (3b)
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where n is any integer. This allows spectral numerical techniqtes to be applied, enabling the spatial
terms to be expanded using Fourier series (Orszag, 1971). Periodic boundary conditions are
appropriate for the numerical simulation of statistically homogeneous flows (Lesieur, 1987).

The equations of motion are nondimensionalized using the box size, L/2n, as the length scale, the
buoyancy period, N-1, as the time scale, and (x-1 as the temperature scale. The factor of 2nr in the
definition of the length scale enables spatial wavenumbers to be defined as integer values. Hereafter,
the nondimensionalized forms of the equations of motion will be utilized.

In developing a LES model, the equations of motion are volume averaged to define the grid scale
motions distinct from the SGS. This filtering operation partitions a fluid variable (f(x;t)) into GS
(f(x;t)) and SGS (f (x;t)) components (Leonard, 1974),

f(x;t) = f(x;t) + f(x;t) (4)

The GS value of f(x;t) is evaluated as its convolution with a spatial filtering function (G(x)), or

f(x;t)= J G(x-x')f(x';t)dx' (5)
D

where the integration is taken over the entire domain, D. A boxcar average in physical space is often
used for G(x), or

I x <(6)Gx= 0 1xl > A(6

where A is the physical space grid-scale (A=L/Nx; where Nx is the numerical resolution in the x-
direction). This boxcar averaging procedure is implicit in the pioneering large-eddy simulations of
Deardorff (1970) and Schumann (1975) and is appropriate when the SGS fluxes and stresses are
parameterized in physical space. There are many other filtering operators that may be applied in
physical space (e.g., Leonard, 1974; Ferziger, 1983). Alternatively, the filtering may be preformed in
spectral space, following

f(k;t)= f G(k-k')f(k';t)dk' (7)

D

where k is the vector wavenumber (ki; kl,k 2,k3) and G(k) is the spectral filtering function which is

often a sharp-cut filter (G(k)=l if Iki <kc; G(k)=0, elsewhere; where k, is the GS cutoff
wavenumbern/A). Spectral filtering is appropriate when the SGS parameterization is made in
spectral space. Gaussian filtering functions (which are the same in spectral and physical space) may
also be used for G(x) (e.g., Mansour et al., 1979; Ferziger, 1983; Piomelli et al., 1989). For the
present application, the advantages of these procedures do not appear to outweigh the cost, complexity
and possible ambiguities in the interpretation of the resulting simulations (Clark et al., 1979; Ferziger,

1983; Eidson, 1985). However, this may not be true for inhomogeneous flows, such as wall-
bounded flows (Ferziger, 1983; Piomelli et al., 1989).

Application of either of the averaging procedures (eqns. 5 or 7) to the nondimensionalized equations

of motion gives

-i-i _ a i + g S 3T +v + i (8a)
" ax "ax +
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= .-.. -dTs +  
2T -

T jf 3dx, T.W + FT (8b)

0 (8c)

where the summation convention is used. The nonlinear flux terms also need to be partitioned into GS
and SGS components.

UiUj = UjUj + U'ifij + Uiu'j + U'iU'j = UiUj + Aij - rii (9a)

uIT = uiT + u'iT + uiT' + u'iT' = uiT + Aei - "To1  (9b)

where Aij is the Leonard momentum flux (Ui~j -UiUj), Ai is the Leonard heat flux (.iT -uT), ri is
the SGS momentum flux (u'iu'j + u' ij + Tiju' ), and toi is the SGS heat flux (U'iT' + u'i + iT').
The Leonarl fluxes are a consequence of the nested averaging procedure (Leonard, 1974) and will be
neglected presently. Leonard fluxes are identically zero when a sharp-cut spectral filter is used and are
very small when boxcar averaging in physical space is applied (e.g., Leonard, 1974; Clark et al.,
1979; Yoshizawa, 1982; Ferziger, 1983; Eidson, 1985). However, the Leonard fluxes must be
considered when a Gaussian filter is used.

Applying the above definitions of the SGS fluxes and writing the GS nonlinear terms in the
momentum equation in vorticity form (to insure numerical stability), the GS equations of motion may
be expressed as

-jk Uj ik - " + g T+ v -  + Fi (10a)
Oi o xj xj bXj

( + TlOb)"T- "xj "U3 dx3 +  i" xj

au. = 0 (10c)

where ( is the GS vorticity vector (Ri = £Di Uk/axj) and Eijk is the alternating tensor. These
equations are then solved, for specific forcing conditions, to give the evolution of the GS velocity and
temperature fields. First the SGS momentum and heat fluxes ('qj and tj) need to be parameterized in
terms of the GS velocity and temperature fields.

SUBGRID SCALE PARAMETERIZATION METHODOLOGIES

Many different methodologies have been employed for parameterizing SGS fluxes in LES models.
SGS parameterizations that are applied in physical space range from very simple "production equals
dissipation" SGS energy budget approaches (e.g., Smagorinsky, 1963; 1990; Clark et al., 1979;
Eidson, 1985; Mason and Derbyshire, 1990; Siegel and Domaradzki, 1991 a) to detailed evaluations of
the entiie SGS energy budget (e.g., Deardorff, 1980; Mocng, 1984; Schmidt and Schumann, 1989;
Gallacher, 1990). On the other hand, spectral SGS parameterizations have been developed based
upon turbulence closure theory calculations of the rate of energy transfer across the GS cutoff and are
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usually applied in wavenumber space (e.g., Kraichnan, 1976; Chollet and Lesieur, 1981; Lesieur,
1987; Domaradzli et al., 1987; Yakhot et al., 1989). Unfortunately, detailed intercomparison studies
of these SGS parameterization methods are lacking for stably-stratified turbulent flows (see
Schumann, 1991 for a recent exception).

Here, we discuss and apply two different SGS parameterization methods, the physically-based
Smagorinsky SGS eddy viscosity and the spectral Chollet and Lesieur (1981; hereafter CL8 1) eddy
viscosity. Preliminary comparisons that we have made indicate that the evolution of the GS energetics
is essentially the same for the two different SGS eddy viscosities. However, the GS energy spectra
produced using the CL81 spectral eddy viscosity reflect spectral levels and slopes closer to theoretical
Kolmogorov "5/3" spectra than do those produced using the Smagorinsky eddy viscosity (fig. 1).
Before our LES results are discussed, it is important to address how SGS parameterizations are made.

The SOS fluxes and stresses are most often represented in flux-gradient form, or
' kk

rij = - KsGsSij + Lk- 8 ij (1la)

Ksos DT ( b-~i= - K (11b)

where Ksas is the SGS eddy viscosity (a function of x and t), Sij is the GS rate of strain tensor
(Dii/axj + uai/ax'), and Prt is the SOS turbulent Prandtl number (the ratio of the SOS eddy viscosity to
the SGS eddy diffusivity). The final equations of motion are

= e kuj'k + g j3  -+ ' (KsGsSij) .Fi (12a)Tt= eijk Uj 0k" _i + g 803 + Y Xj-Xj 7Xj(1a

DT aiiT dTS a2T a rKscGsaT)+F2b
= - +  + + PT (I 2

= 0 (12c)

where R is the pressure head which includes the GS (uikik/ 2) and SOS (tkl3) normal stresses.

Once the SOS eddy viscosity and forcing functions are specified, this system of equations can be
solved directly for the evolution of the GS flow. We employ pseudo-spectral numerical techniques,
based upon Fourier series expansions, to solve for the spatial terms of the equation of motion and
advance time using the leap-frog method (e.g., Orszag, 1971; Siegel, 1988; Canuto et al., 1988).
These methods are highly accurate and are standard in numerical turbulence investigations. A
complete description of the numerical methods used may be found in Siegel (1988).

THE SMAGORINSKY SOS EDDY VISCOSITY

The Smagorinsky SOS eddy viscosity is derived assuming that Kscs depends only upon the smallest
resolvable scale (A) and the rate at which KE is transferred across the GS cutoff (A). For the inertial
subrange of turbulence, the spectral transfer of KE is equal to the KE dissipation rate, eKE. Applying
only dimensional arguments, KsGs is given by
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Figure 1: Comparison of radial wavenumber kinetic energy and temperature variance spectra
calculated using tht Smagorinsky SGS eddy viscosity (upper) and the CL8 1 eddy viscosity (lower).
The dotted lines are theoretical inertial subrange Kolmogorov spectra for KE (E(k) = otK P- 1'k0/ 3) and
for temperature variance (E'r(k) = OK X C 1/3 0/3, where x is the temperature variance dissipation
rate). The two lines express the magnitude of experimental uncertainty in the values of the
Kolmogorov constants, aK and PK

Ks.s = (c A)41/3 E(13)

where the constant of proportionality (c) is referred to as the Smagorinsky constant. To evaluate the
value of KSGS at any point in space, the energy transfer rate (EKa must be known at that location. in
general, £IciE depends on all scales of motion. However, the SGS fluxes must be parameterized in
temus of the GS motions alone. For a statistically homogeneous flow, such within the turbulent
inertial subrange, the dissipation of KK is equal to its production, or

KE = (s 4 Tij190 (14)

Here, the dissipation of KE is balanced by the turbulent production by the GS shear (S) and by the
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SGS buoyancy flux (g 503 xei). Applying the flux-gradient forms of the SGS fluxes (eq. 11) results in
2 DTso

EKE = GKs s " Prt x3  (15)

where §2 is the mean square rate of strain (=Sij5 ij). Finally, KSGS solved for by substituting the
scaling relation for egK (eq. 14) into the SGS kinetic energy balance (eq. 15), or

A)2  T2  § DT> (16)Ks 2i f- '  "2 Prt ;3Prt X3

The SGS eddy viscosity is set to zero if g2 is less than 2g/PrtOr/Dx 3. However, this SGS "critical
Richardson number" condition did not occur during our simulations. Further, the inclusion of SGS
buoyancy production did not significantly affect the resulting values of Ksos (Siegel, 1988) consistent
with the assumption that A lies within the inertial subrange of turbulence.

The choices of values for cs and Prt were made primarily by comparing simulated GS spectral
energy distributions with theoretical Kolmogorov spectra for high Reynolds number turbulence,
although a thorough literature survey was also made. The best results from this comparison are
shown in figure 1. Six numerical experiments were performed to examine the degree of
correspondence between the LES determined and theoretical radial wavenumber spectra and its
relationship with variations in the values of cs and Prt (Siegel, 1988). The final values of c. = 0.15
and Prt = 1.0 best represented the theoretical spectra, especially for the temperature variance spectra
(fig. 1). However, the LES KE spectra underestimate the Kolmogorov spectra by a factor of roughly
five and exhibit a sharp "roll-up" as the GS cutoff wavenumber is approached (k¢=3 1). This "roll-up"
indicates that the Smagorinsky SGS eddy viscosity is not adequately transferring KE across the GS
cutoff and that there KE is "piling-up".

Spectral distributions of the magnitude of KSGS, as well as the energy transfers due to the
parameterized SOS fluxes, were also examined (Siegel and Domaradzki, 1991b). A "cartooned"
representation of the spectral distribution of KsGs (normalized by (E(k)/k)2; where E(kc) is the value
of the KE spectrum at the cutoff wavenumber, kI) is shown in figure 2. The normalized KSGs is to
first order spectrally uniform, isotropically distributed and invariant in time. Similarly, SOS spectral
energy transfers are white, indicating a uniform loss of energy at all scales. These results suggest that

the Smagorinsky SGS eddy viscosity may be replaced by an isotropic, spectral SOS parameterization

that scales as (E(kc)/kc) 1/2. A detailed analysis of the Smagorinsky SGS eddy viscosity and its energy
transfers is presented in Siegel and Domaradzki (1991b).

THE CHOLLET AND LESIEUR (198 1) SPECTRAL EDDY VISCOSITY

The Choilet and Lesieur (1981; CL8 1) spectral eddy viscosity has been derived using the Eddy
Damped Quasi-Normal Markovian (EDQNM) turbulence closure theory calculation of the energy
transfers across the GS cutoff (Chollet and Lesieur, 1981; Chollet, 1984; Lesieur, 1987). SGS eddy
viscosities derived from alternative spectral closure formulations (Kraichnan, 1976), as well as from
the results of direct isotropic turbulence simulations (Domaradzki et al., 1987), are similar. The CL81
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Figure 2: Spectral distribution of the CL81 eddy viscosity (Chollet and Lesieur, 1981) and the spectral
distribution of the Smagorinsky SGS eddy viscosity calculated from the decaying simulations of
stratified turbulence (based upon data from Siegel and Domaradzki, 1991b).

eddy viscosity has been used by Lesieur and his collaborators for examining stably-stratified
turbulence (Mdtais, 1985; Lesieur, 1987; Lesieur et al., 1988).

The CL81 eddy viscosity, vr(k), is formulated by the EDQNM evaluation of the spectral energy
transfer across the GS cutoff (A) due to triad interactions which are both local (due to wavenumbers
near the cutoff wavenumber, kc) and nonlocal (from spectrally distant wavenumbers). The form of the
CL81 spectral eddy viscosity (normalized by (E(kc)/kc)'r) is shown in figure 2. For low radial
wavenumbers (k<10), the normalized CL81 eddy viscosity is equal to -0.28 while it increases rapidly
as the GS cutoff wavenumber is approached. This high wavenumber spectral cusp indicates the
importance of local interactions to the spectral transfer of energy across the GS cutoff.

The CL81 SGS eddy viscosity is applied in spectral space where the term in (12) containing Ksrs is
replaced with the CL81 spectral eddy viscosity (Ve(k)),

' (KssS ij) # vek) k2 ui (17)

where Ve(k) is equal to the normalized SGS eddy viscosity shown in figure 2 multiplied by the scaling
factor, ((E(k,)/kY'2). A similar transformation is made for the heat equation. The CL81 spectral eddy
viscosity (ve(k)) and diffusivity (Y (k)) are related by a constant SGS Prandtl number (Prt=O.6;
Chollet, 1984). Note that the normalized value of the Smagorinsky SGS eddy viscosity spectra,
although uniform, is greater than the normalized CL81 viscosity at low wavenumbers and less at
higher wavenumbers (fig. 2). In a sense, the Smagorinsky SGS eddy viscosity accounts only for the
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nonlocal turbulent interactions represented by the low wavenumber plateau region of the CL81 SGS
viscosity, but at a level higher than the CL81 plateau to account for its inefficiency of local energy
transfers (Lesieur, 1987; Siegel and Domaradzki, 1991b).

The GS KE spectra calculated using the CL81 eddy viscosity are quantitatively similar to the
theoretical Kolmogorov energy spectra (fig. 1) for the higher simulated wavenumbers (k>10). This
subjective measure of SGS parameterization performance indicates that the CL81 eddy viscosity
clearly outperforms the Smagorinsky SGS eddy viscosity. Another indication is the lack of a "roll-up"
in the CL81 energy spectra near the cutoff wavenumber, indicating that the CL81 cusp is effective at
removing energy near kc. In addition to an increase in performance, the use of the CL81 eddy
viscosity represents a substantial improvement in computational efficiency (about a factor of 2). This
speedup comes from the fact that CL81 SGS parameterization does not require that D(Ksos Sij)/axj be
evaluated at each time step, which eliminates more than half of the 3-D fast Fourier transforms
required to implement the Smagorinsky SGS parameterization.

LES EXPERIMENTS

We present the results of two LES experiments to investigate the dynamics and kinematics of oceanic
internal gravity wave fields. The first experiment is the study of the decay of stably-stratified
turbulence at oceanographically relevant length and time scales (Siegel, 1988; Siegel and Domaradzki,
1991a; 1991b). The initial wavenumber distribution is consistent with an extrapolation of the Garrett-
Munk (GM) internal wave spectrum to scales smaller than 10 m. This experiment clearly shows many
features of the so-called "turbulent collapse" (the transition from a fully turbulent flow to an internal
wave dominated field). However, the present results illustrate several important differences from
previous laboratory and direct numerical results. In particular, highly anisotropic, "pancake"
structures are not formed coincident with the onset of the turbulent collapse. We speculate that these
differences may be attributed to the extreme differences in Reynolds numbers for the two cases.

The second experiments are the preliminary investigations of the use of LES techniques to directly
determine eddy diffusivities for a steady GM ocean (Siegel, 1991). Here, the lowest resolved wave
modes are forced to maintain constant energy, consistent with GM amplitudes while the phases of the
forced waves are determined dynamically. The long time integration (30 Nt) and steady forcing
enables time/space mean values of the buoyancy flux and hence, the vertical eddy diffusivity (KBF) to
be directly determined. Values of vertical eddy diffusivity averaged over long time (>_20 Nt) and large
space (125,000 m3) scales are appropriate for use in oceanic circulation models. The direct KBF
determinations are compared with the results of several indirect turbulent energy dissipation rate
methods (Osbom and Cox, 1972; Osborn, 1980). In addition, the dependency of KBF upon N, the
buoyancy frequency, is also investigated. These LES results are still preliminary as further
experiments and detailed analyses are required. However, this successful "proof of concept"
experiment suggests that LES techniques, when explicitly forced to in situ observations, may be a
useful tool for examining mixing processes within the thermocline.
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LES OF DECAYING OCEAN TURBULENCE

The first LES experiment to be discussed is the study of the decay of stratified turbulence at
oceanographically relevant space and time scales. The temporal evolution and spatial structure of the
decaying stratified turbulent flow are investigated where the initial conditions are represented by an
extrapolation of the GM spectrum. These results will be addressed briefly here as they are discussed
in detail in Siegel and Domaradzki (1991a) and (1991b).

The modeling domain (L) is chosen to be 10 m and the numerical resolution is 643. This results in a
GS cutoff (A) equal to 15.6 cm. The choice of L (=10 m) was made to insure that the GS cutoff lies
within the inertial subrange of turbulence. The separation between GS and SGS motions is done with
an implicit boxcar filter and the Smagorinsky SGS eddy viscosity is used. Three simulations were
made with buoyancy frequencies of 1, 3 and 10 cph and the equations of motion were integrated
forward in time for 10 units of buoyancy time (Nt). Each experiment required 6.8 CPU hours of Cray
XMP/48 time. For brevity, only the 1 cph case will be shown.

The initial conditions are based upon an extrapolation of the GM internal wave spectrum to scales
less than 10 m. Of course the GM spectrum was not developed to correctly predict the variance at
these scales. However, there does not exist a unified 3-D velocity and temperature finestructure
spectrum that one could use to initialize the LES model, although several advances towards this goal
have been made recently (e.g., Kunze et al., 1990; M.C. Gregg, this volume). As it is recognized that
the GM spectrum should not hold for scales less than 10 m, there is little reason to believe that the
phases of the individual internal wave modes will follow linear theory either (e.g., Holloway, 1983;
Miller et al., 1986; Shen and Holloway, 1986). Hence, we randomized not only the internal wave
mode phases, but the phase of each component of each wave mode. This will obviously result in an
initial flow field that is highly unstable and its initial decay will be rapid and turbulent. The use of a
fully random initial field is consistent with numerical turbulence procedures (e.g., Orszag and
Patterson, 1972; Rogallo and Moin, 1984; Mdtais and Herring, 1989). Further details concerning the
initialization procedure and its consequences may be found in Siegel and Domaradzld (1991a).

The temporal evolution of the domain averaged energetics and length scales is shown in figure 3.
All of the component energy levels decay rapidly as expected. Rapid exchanges of vertical kinetic
energy (VKE) and potential energy (PE) are observed during the decay's latter stages. These
component energy exchanges are driven by internal gravity wave motions which give rise to a
reversible buoyancy flux (BF). However, the internal waves cannot be linear as the domain-averaged
BF is nonzero (Stewart, 1969). Evaluation of SGS energetics, fluxes and dissipation indicates that
SGS processes regulated energy dissipation, but made negligibly small contributions to the total
energetics and fluxes, consistent with the LES assumptions.

The evolution of the the Ozmidov (Lo) and the vertical integral (h) length scales provide additional
insights into the state of decaying stratified turbulence. The Ozmidov scale is equal to

Lo = (R3) (1 8a)

which represents the vertical scale where buoyancy and inertial forces equally influence the evolution
of vertical momentum. That is, vertical scales larger than Lo will be affected by the stable
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Figure 3: Temporal evolution of the domain averaged HKE, VKE and PE (upper panel), the vertical
energy containing length scale, h, and the Ozridov scale, L, (middle panel), and the buoyancy flux,
BF, and cumulative buoyancy flux, CBF (lower panel). The mean stratification is I cph and the
experiment is conducted for 10 buoyancy periods, Nt. ((from Siegel and Domaradzki, 1991la).
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stratification. Whereas for scales smaller than Lo, these eddies will remain unaffected. Integral length
scales are calculated by evaluating the most probable length scale from the kinetic energy spectra, or

Nf2 N/ 2
)~ A i( ) A Ai

h = K (u,(k3)ui(-k3)/I k3 ( ui(k 3)ui(-k3)) (18b)
k3=1 k3=1

where ui(kj) here represents Fourier amplitudes of the ith component of the velocity field in the jth
wavenumber direction and index summation is assumed. This definition for h is somewhat arbitrary
as many other choices could have been made (Mdtais and Herring, 1989). It should be noted that h is
related to the vertical extent of the kinetic energy structures and makes no distinction whether these
structures are turbulent eddies or internal waves.

The vertical energy-cc utaining scale (h) remains nearly constant while the Ozmidov scale (Lo)
decreases rapidly with time (fig. 3). Initially, L, is much larger than h indicating that the vertical
motions of the energy-containing eddies are regulated primarily by inertial, or nonlinear, processes.
However as Lo decreases, buoyancy forces become more important. This transition occurs at Nt = 2,
indicating that the Froude number (Fr-(L/h)2/3) is equal to one. Note that this dynamical transition
does not manifest itself in the evolution of h while synchronous oscillations in VKE and PE are most
apparent after the transition. This behavior is also observed with different stratification intensities
(Siegel and Domaradzki, 1991 a).

Evidence of the turbulent collapse is most apparent in the temporal evolution of the buoyancy flux
(BF; fig. 3). When BF is negative, VKE is converted to PE, effectively raising thet fid's center of
mass. If this conversion happens irreversibly, the fluid's center of mass is permanently raised
indicating that diapycnal mixing has occurred. A reversible BF shows up as internal wave motions.
Irreversible aspects of BF are best illustrated by examining the cumulative buoyancy flux (CBF), or

t

CBF(t) = J BF(,t) dt (19)
0

which is shown in the bottom panel of figure 3. Early in its evolution (Nt<2), values of CBF decrease
monotonically. After this period, CBF stops accumulating negative values and begins to oscillates in
time. The transition from an irreversible accumulation of PE to reversible BF oscillations indicates that
the initially turbulent flow evolves rapidly into a field of nonlinear internal waves.

The transition from a fully turbulent to a buoyancy dominated flow may be visualized by examining
the temporal evolution of vertical slices of the absolute temperature (T(x;t) + Ts(z)). An example of
the temporal evolution in the absolute temperature is shown in figure 4 for Nt of 1,2, 3 and 4. These
spatial distributions give the appearance of a turbulent flow gracually evolving into an internal wave-
dominated flow, with the general features described above. However, this transition does not appear
to occur suddenly and these data cannot be used to visually determine the transition time. We have
also analyzed 3-D topological structure of isotherm distributions which also provide useful visual
evidence of the collapse (color plates may be found in Vasilopculos, 1991).

The term "turbulent collapse" refers to the process of decay of stably-stratified, fully developed
turbulence to a state where the vertical turbulent scales are suppressed by the background stratification
(e.g., Dickey and Mellor, 1980; Stillinger et al., 1982; Itsweire et al., 1986; Lesieur, 1987;
Hopfinger, 1987). This vertical scale suppression is thought to cause the initially 3-D eddies to
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Figure 4: Temporal evolution of th vertical-horizontal sections of the absolute temperature (T(z) +T(x,t)) for buoyancy periods of 1, 2, 3, and 4. The mean stratification is 1 cph. (from Siegel and
Domaradzki, 1991a).

"collapse" into nearly horizontal "pancake-like" vortices where their vertical scale is limited by L.
Observations of these "pancake-like" eddies have been made primarily from laboratory flow
visualizations (e.g., Lin and Pc, 1979; Hopflnger, 1987; Browand et al., 1987), while reductions in
energy decay rates and/or a vanishing buoyancy flux are often used as proxies of the collapse's
o: rrence (Dickey and Mllor, 1980; Stillinger et al., 1982; Itsweire et al., 1986; Hopfinger, 1987).

Thle LES results appear to give conflicting infonation about the occurrence of the turbulent collapse.
For example, energy decay rates do not decrease significantly coincident with the onset of the turbulent
collapse. Further, the size of the vertical integral scale (h) remains unaffected by the collapse, roughly
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the same size as the horizontal energy-containing scale (1; not shown; Siegel and Domaradzki, 1991a).
These results are unexpected as classical length scale phenomenology predicts that the vertical length
scale of the turbulent eddies, and their KE, should decrease in a mannei similar to the Ozmidov scale.
Thus, we are not seeing a "pancaking" of the energy-containing eddies coincident with the collapse.
However, the change in the nature of the BF indicates that the collapse has occurred (fig. 3).

The invariance of integral length scales implies that the dynamics of these energy-containing motions
must have evolved from a turbulent state to one where buoyancy forces are important while retaining
their size and isotropy. This lack of "pancaking" may be examined by addressing the evolution of the
total vertical energy (TVE), the sum of VKE and PE. As the buoyancy flux acts only to exchange
VKE and PE, BF will have absolutely no influence upon TVE. This means that vertical length scales
characteristic of TVE will remain constant during the collapse. Similarly, the nonlinear energy
cascades of TVE and hence, its energy decay rate will remain unaffected by the collapse. Thus, the
onset of the collapse only indicates that the evolution of PE and VKE will be intertwined by a
reversible BF and energy decay rates, as well as integral length scales, should remain unaffected by
this dynamic transition This will remain true as long as molecular dissipation processes are not
important for the evolution of the energy-containing motions (Rex>>l).

Here, we suggest that this apparent lack of correspondence between the LES results and previous
laboratory and direct numerical experiments is caused by extreme differences in the Reynolds numbers
for the two cases. As described earlier, Reynolds numbers based upon Taylor length scales (Rex)
corresponding to the oceanic internal wave field are O(105) consistent with the LES results. However,
laboratory or direct numerical experiments rarely give initial Rex values as great as 100. It should not
be expected that these low Rex experiments can realistically simulate the interactions found within the
oceanic internal wave field as molecular processes will have far too important roles in the evolution of
the energy-containing eddies.

This Reynolds number dependency of the turbulent collapse is consistent with the results of a recent
scaling analysis by Gargett (1988). Gargett's scaling indicates that for a high Reynolds number flow
characteristic length scales will be isotropically distributed, whereas for a low Rex flow the vertical
scales would be restricted. Her scaling holds only when the Froude number is O(1) and hence, only at
the onset of the collapse. However, it is not clear whether the assumptions used in Gargett's scaling
are valid (e.g., Van Atta, 1990; Yamazaki, 1990).

Unfortunately, we cannot state with certainty that this observed lack of "pancaking" is caused by the
large LES-simulated Reynolds numbers. This is because there are many questions concerning the
roles of the SGS method and the initial conditions upon the LES simulated flow field. One should
note that the evolution of the buoyancy flux (a second order moment) is predicted consistent with the
collapse onset while the spatial energy distributior. (i.e., first order statistics) are clearly inconsistent
with previous low-Re observations. It seems odd that the choice of the SOS parameterization, even an
isotropic one like the Smagorinsky SGS eddy viscosity, would "correctly" predict the BF evolution,
but not the flow energetics. Other SGS methods (CL81) which we have tried give nearly identical
results. We believe that the reason for this is that the simulated high wavenumber motions are within
the inertial subrange of turbulence and are locally isotropic (Siegel and Domaradzki, 1991b). This is
consistent with the basic tenets of the large-eddy approximation described above. Therefore, the
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application of an isotropic SGS eddy viscosity to parameterize the SGS energy fluxes in stratified
turbulence may be appropriate.

Similarly, it seems unlikely that the initial conditions have much influence upon the final evolution of
the flow field. We have initialized the LES experiments with a highly anisotropic energy distribution
that rapidly becomes isotropic. As discussed above, this rapid reorganization of spectral energy is
caused by the choice of random phases among wave components. Thus, it is unlikely that the initial
anisotropic flow is controlling much of the flow's evolution. Further arguments supporting our
conjecture of the importance of Reynolds numbers in the evolution of stratified turbulence is beyond
the scope of this contribution. However, detailed experiments and analyses are required before the
turbulent collapse can be considered to be an "understood" phenomena, particularly for high Reynolds
number flows.

We suggest that the absence of "pancaking" in our LES results is due to the large simulated
Reynolds numbers compared with previous laboratory and direct numerical experiments. If our LES
results are truly representing the turbulent collapse, this suggests that the fundamental nature of
decaying stably-stratified turbulence may be different at oceanographically relevant space and time
scales compared with previous laboratory observations. This indicates that one should be cautious
when applydng low Reynolds number results to the oceanic internal wave field.

LES OF STEADY THERMOCLINE MOTIONS

Here, we illustrate preliminary results of a LES model of a steady GM ccean for directly determining
values of the vertical eddy diffusivity. The quasi-steady forcing and long time integration enables
values of the buoyancy flux (<BF>, where <.> represents a tirie-spacc average) and hence, values of
the vertical eddy diffusivity (KBF) to be calculated over loi,& time scales (> 20 Nt). The LES
calculated KBF values are determined over many hours and spatial scales of 50 m and are
representative of vertical eddy diffusivities appropriate for use in oceanic general circulation models.
Please note that these results are preliminary.

The GS equations of motion are numerically forced to mrintain constant energy, consistent with GM
spectral amplitudes, for the 8 wave modes where Iki = (1,1,1) (that is, for k=(l,1,1), k=(l,1,-1),
k=(1,-1,l), etc.). The forcing amplitude is based upon the GM internal wave spectrum while the
phases are determined by solving the equations of motion. This forcing method has been used in the
numerical simulation of steady isotropic turbulence (Siggia and Patterson, 1978; Kerr, 1985). It has
been shown that the nature of the forcing method (i.e., VKE to PE ratio, spectral weighting of the
forcing function, etc.) can have significant impact on the simulated flow fields (e.g., Shen and
Holloway, 1986; Holloway, 1988; Holloway and Ramsden, 1988). By selecting a priori the forcing
wavenumber (Ikl (1,1,1)), the ratio of VKE to PE (2/3) (and PE to HKE; 1/2) for the forced waves
is fixed by the GM spectrum and is independent of the buoyancy frequency. Whether this choice of
forcing is representative of the oceanic internal wave field, as well as its role in determining KBF, is
unknown at this time.

The domain is a triply periodic cube with dimensions of 50 m on a side. The numerical resolution is
963 resulting in a GS cutoff (A) of 52 cm. The Chollet and Lesieur (1981; CL81) spectral eddy
viscosity is used to parameterize the SGS processes. Near-perfect correspondence is observed
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between the theoretical Kolmogorov spectra and the LES calculated energy spectra suggesting that the
CL81 SGS eddy viscosity is performing adequately (fig. 1). The flow field is initialized as in the
decaying experiments and is numerically forced as described above. Three mean stratifications (1, 3
and 10 cph) are used and the GS equations of motion are integrated for 30 buoyancy periods (Nt).
Statistical quantities (time/space means; < • >) are calculated for the last 20 Nt of the simulations when
the flow is nearly stationary. Statistical quantities are re-cast into dimensional units for ease in
comparison with field observations. Each experiment requires about 12 CPU hours of Cray YMP
8/864 time (-20 CPU minutes per Nt).

Temporal evolution of the energetics and buoyancy flux are shown in figure 5 for the N = 3 cph
experiment (the other experiments are qualitatively similar). A high degree of temporal reorganization
is occurring while the energy levels are generally decreasing in time. This is due primarily to the
energy variations of the zero wavenumber components, although there is some evidence of small
changes in spectral energy levels after Nt = 10. As before with the decaying simulations, significant
oscillations in VKE and PE are observed driven by a reversible buoyancy flux. However, the BF
oscillations are not strictly periodic, indicating the existence of several internal wave modes.

Hem, our goal is to use the results from the quasi-steady LES experiments to directly determine
relevant mixing parameters. Space/time averages for kinetic and potential energy dissipation rates
(<eKE> and <epp.) are given in Table 1. Values of <eKE> range from 1.0 x10-8 to 5.x10-7 m2 s-3

consistent (although a bit high) with observed mean values (e.g., Gregg, 1987; 1989; Gregg and
SS&nford, 1988). The variation of the time/space mean values of <e.E> and <cpE> with buoyancy
frequency, N, is shown in figure 6. Both <eaT> and <epE> show a N+7/4 dependency similar to the
scaling results of Gargett and Holloway (1984) and the eKE parameterization of Gregg (1989). A
direct comparison of the LES results with the Gregg's (1989) parameterization is presently underway.
The ratio of ,<epE> to <eKF> defines the mixing efficiency, i1. Values of ri are equal to 0.3
independent of N (Table 1), fairly consistent with in situ observations (e.g., Oakey, 1982).

Similarly, the vertical eddy diffusivity, K11p, can be directly determined knowing the space/time
averaged buoyancy flux, <BF>, or

<BF>
KBF- - N2  (20a)

The LES-calculated KBF values all are positive indicating that on the average there is a down gradient
flux of heat. Specifically, values of K3F range from 6.0xl0 "6 to 6.7x10"4 m2 s- 1 (Table 1) for the
stratifications investigated and are generally consistent with the "abyssal recipes" value of 104 m2 s-1

TAiLE 1: SFACE/TIME MEAN QUANTITIES FOR THE GM FORCED LES EXPERIMENTS

N (cph) BF (m2/ 3) KE (m2/s3) EpE(m 2/s3) 11 KBF (m2/s) K, (m2/s) K (m2/s)

1 l.83x10-11  1.01x10 -8  3.02xl0 "9  0.30 6.01x10 6  6.65x10 -4  9.93x10 -4

3 2.33x10- 9  5.77xl0 "8  1.74x10-8  0.30 8.48xl0 "5  4.20x10-4  6.35x10-4

10 2.05xl0 "7 5.11x10 "7 1.65x10 -7 0.32 6.73x10 4 3.36x10 -4 5.43x10 -4
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Figure 5: Temporal evolution of energetic quantities (HKE,VKE and PE), as well as the buoyancy
flux (BF), for the forced GM LES experiment (N=3 cph). Averaging for the statistical calculations is
made only for the last 20 Nt.

(Munk, 1966). However, values of KBF increase dramatically with N (going as N+2; fig. 7). At this
point, we do not know exactly what is causing this anomalous dependency on N. However, it seems
likely that the nature of the numerical forcing can have an undue influence upon KBF. Indications of
this are apparent when one compares the space/time averaged <BF> and <epE> for the N=10 cph
experiment (Table 1). For this experiment, values of <BF> are greater than <epE> indicating that more
energy is being transferred into PE from VKE than is being removed by diffusive processes. For a
simplified "production (+ forcing) equals dissipation" PE budget to hold, there must be a mechanism
to transfer this energy somewhere else. We think that the "culprit" may be the forcing mechanism
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where PE is actually removed by the forcing. We are presently investigating this in detail. It should
be mentioned that the time averaged BF will give tle correct irreversible exchange of KE to PE (e.g.,
Lombard et al., 1990) as it is not necessary to calculate the change in the background stratification in

order to determine mixing coefficients (e.g., Winters and D'Asaro, 1990).

Several parameterization methods have been developed to predict values of vertical eddy diffusivity
from measurements of turbulence dissipation rates. These indirect methods solve simplified
turbulence variance budgets to determine values of vertical eddy diffusivity (e.g., Osbom and Cox,
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1972; Osborn, 1980; Mourn, 1990). For example, if the temperature variance dissipation rate, X, is
known, the temperature variance budget may be solved to give the eddy diffusion of heat, KZ,
(Osbom and Cox, 1972), or

K <X>(20b)
X -(dTjdz) 2

where dT/dz is the mean temperature gradient. Another method involves solving a simplified
turbulent kinetic energy budget to provide an upper bound for values of the vertical eddy diffusivity
(Osbom, 1980). After the ratio of shear to buoyancy production of turbulent kinetic energy is decided
upon, values of eKE are used to provide the eddy diffusivity, KE, or

KE. 0.2 <eKE>(20c)
N2

In the past, eddy diffusivity parameterization assumptions have been tested by evaluating variance
budgets, not by direct comparison to measurements of the buoyancy flux (Garrett, 1979; Washburn,
1987). Only recently have direct determinations of vertical velocity fluctuations enabled these
comparisons to be made (Mourn, 1990).

Values of KX and K for the forced LES experiments range from 3.4x10 4 to 9.9x10-4 m2 s-1 and
hence, vary considerably less than the two-decade range of variation observed for KBF (Table I).
Generally, KX and K are both greater than the directly determined KBF. This was also observed in the
in situ KBF determinations by Mourn (1990). However, the dependencies of KX and K, on N are very
different "an the dependency observed for KBF (going like N-1/4 instead of N+2; fig. 7).

Obviously, there is a discrepancy in the vertical eddy diffusivities predicted by the direct and the
variance dissipation methods. These differences are particularly apparent in the dependency of the
estimated eddy diffusivities on the background stratification intensity, N. As discussed previously,
the interactions of the numerical forcings with the determination of the BF are not well understood.
However, the fact that the indirect methods do such a poor job in predicting KBF, regardless of the
what's forcing the large-scale (50 m) internal waves, indicates that these indirect methods are not
adequately parameterize vertical eddy diffusivities for the conditions numerically simulated.

The existence of domain averaged BF oscillations in the present numerically forced LES experiments
may have some interesting observational consequences. That is, although the domain-averaged BF is
calculated over a volume equal to 125,000 M3, its value is not stationary (fig. 5). Thus, instantaneous
determinations of the buoyancy flux, even when averaged over a large spatial scales, may not
adequately provide the necessary data to determine vertical eddy diffusivities for use in general
circulation models. These large-scale ocean models xwquire that small-scale internal wave "noise" be
filtered out in terms of an effective eddy diffusivity. The present observations suggest that long time
and large space integrations or in situ observations are necessary before relevant eddy diffusivities are
to be determined.

WHAT'S NEXT?

The GM forced LES experiments have successfully replicated many of the dynamical quantities
characteristic of the ocean's internal wave field. Specifically, direct calculations of vertical eddy
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diffusivity, turbulent dissipation rates, and mixing efficiency have been surprisingly well in line with
oceanographic thinking. Frankly, the fact that the sign of the eddy diffusivity was correct was a cause
for celebration in Santa Barbara!! However, the anomalous dependency of KBF on N raises doubts
that our LES model is realistically simulating the internal wave field. Of course, there are many
possibilities. The details of the numerical forcing, the omission of planetary vorticity (and hence,
near-inertial waves), the restricted spatial scales simulated (< 50 m), the triply-periodic boundary
conditions, possible lack of stationarity, as well as the subgrid scale parameterization method all could
have contributed to the anomalous dependency of KBF on N. Presently, we think that the "culprit" is
the forcing mechanism and we are investigating, in detail, the energy transfers at the forcing
wavenumber. This is not to say that each of the possibilities listed above do not need to be improved
upon. In order for LES techniqtles to be of any use to oceanographers, the assumptions and
mechanisms used to produce the simulations must be continually tested and evaluated.

We are presently implementing planetary vorticity (the f-plane approximation) into our LES model.
This in the view of many is a serious omission in producing realistic simulations of the internal wave
field. The inclusion of planetary vorticity (f-plane approximation) will enable us to force a LES with
prescribed near-inertial waves. In situ observations have shown that much of the velocity finestructure
is associated with near-inertial waves (Kunze et al., 1990) and that these near-inertial waves can give
rise to patches of turbulence (Gregg et al., 1986). This improvement in the realism of the forcing
mechanism should only help the LES model better replicate the internal wave field. An interesting
hypothesis is that dependency of ejKE on N, or for that matter KBF on N, may depend upon the nature
of how energy is fed into the internal wave field.

Eventually, it is envisioned that LES models can be used with in situ observations to provide "data"
of the internal wave field that are presently unobtainable. Such a coupling would enable eddy
diffusivities to be estimated for specific field experiments. This approach is similar to how
hydrographic inverse or regional circulation models are used to give information about fluxes, vorticity
and energy transfers that are, at best, difficult to determine from the field observations alone. Thus,
the combination of field and numerical approaches may prove to be highly synergistic, allowing many
new questions concerning the ocean's internal wave field to be addressed.

ACKNOWLEDGMENTS - The author would like to thank Peter Mfiller for inviting him to the 1991
'Aha Huliko'a Winter Workshop. Comments on this manuscript by Libe Washburn, Sally Maclntyre
and Andrzej Domaradzki were extremely helpful. As always, the support, encouragement and
guidance of Andrzej Domaradzki and Tommy Dickey is gratefully appreciated. Programming
assistance from Ms. Xiaoning Duan has been instrumental in the success of the forced GM
experiments w,dch have been supported by the Office of Naval Research (N00014-90-J-1914).
Supercomputer time has been provided by grants from the San Diego Supercomputer Center which is
supported by the National Science Foundation.



Large-Eddy Simulation of Internal Wave Motions

REFERENCES

Browand, F.K., D. Guyomar, and S.-C. Yoon, 1987: The behavior of a turbulent front in a stratified
fluid: experiments with an oscillating grid. J. Geophys. Res., 92, 5329-5341.

Canuto, C., M.Y. Hussaini, A. Quarteroni, and T.A. Zang, 1988: Spectral Methods in Fluid
Dynamics. Springer-Verlag, p 567.

Chollet, J.P., and M. Lesieur, 1981: Parameterization of small scales of three-dimensional isotropic
turbulence utilizing spectral closures. J. Atmos. Sci., 38, 2747-2757.

Chollet, J.P., 1984: Two point closures as a subgrid scale modeling for large eddy simulations. In:
Turbulent Shear Flows IV, F. Durst and B. Launder (eds.), 62-72.

Clark, R.A., J.H. Ferziger and W.C. Reynolds, 1979: Evaluation of subgrid-scale turbulence models
using a fully simulated turbulent flow. J. Fluid Mech., 91, 1-16.

Deardorff, J.W., 1970: A numerical study of three-dimensional turbulent channel flow at large
Reynolds numbers. J. Fluid Mech., 41, 453-480.

Deardorff, J.W., 1973: Three-dimensional numerical modeling of the planetary boundary layer.
Workshop on Micrometeorology, D. Haugen, ed., American Meteorological Society, 271-311.

Deardorff, J.W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model.
Bound.-Layer Meteor., 18, 495-527.

Dickey, T.D., and G.L. Mellor, 1980: Decaying turbulence in neutral and stratified fluids. J. Fluid
Mech., 99, 13-31.

Domaradzki, J.A., R.W. Metcalfe, R.S. Rogallo and J.J. Riley, 1987: Analysis of subgrid-scale eddy
viscosity with use of results from direct numerical simulations. Phys. Rev. Lett., 58, 547-550.

Ebert, E.E., U. Schumann and R.B. Stull, 1989: Nonlocal turbulence mixing in the convective
boundary layer. J. Atmos. Sci., 46, 2178-2207.

Eidson, T.M., 1985: Numerical simulation of the turbulent Rayleigh-Bdnard problem using subgrid
modelling. J. Fluid Mech., 158, 245-268.

Ferziger, J.H., 1983: Higher-level simulations of turbulent flows. In: Computational Methods for
Turbulent, Transonic, and Viscous Flows. J.A. Essers (ed.), 93-182, Hemisphere Pub.,
Washington, D.C.

Gallacher, P.C., 1990: Large-eddy simulations of the turbulent boundary layer in the upper ocean.
Trans. Amer. Geophys. Union, EOS, 71, 1354 (abstract only).

Gargett, A.E., 1988: The scaling of turbulence in the presence of stable stratification. J. Geophys.
Res., 93, 5021-5036.

Gargett, A.E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar.
Res., 42, 15-27.

Gargett, A.E., P.J. Hendricks, T.B. Sanford, T.R. Osborn, and A.J. Williams III, 1981: A
composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 1258-1271.

Gargett, A.E., T.R. Osbom, and P.W. Nasmyth, 1984: Local isotropy and the decay of turbulence in
a stratified fluid. J. Fluid Mech., 144, 231-280.

Garrett, C.J.R., 1979: Mixing in the ocean interior. Dyn. Atmos Oceans, 3, 239-265.
Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 2, 225-
264.

Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J.
Geophys. Res., 80, 291-297. (also, corrigendum J. Geophys. Res., 80, 3924)

Gregg, M.C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 5249-
5286.

"'1 '7



Siegel

Gregg, M.C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686-
9698.

Gregg, M.C., and T.B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a
diffusively stable thermocline. J. Geophys. Res., 93, 12,381-12,392.

Gregg, M.C., E.A. D'Asaro, T.J. Shay, and N. Larson, 1986: Observations of persistent mixing and
near-inertial waves internal waves. J. Phys. Oceanogr., 16, 856-885.

Holland, W.R. and L.B. Lin, 1975: On the origin of mesoscale eddies and their contribution to the
general circulation of the ocean. I. A preliminary numerical experiment. J. Phys. Oceanogr., 5, 642-
657,

Holloway, G., 1983: A conjecture relating oceanic internal waves and small-scale processes. Atmos.-
Ocean, 21, 107-122.

Holloway, G., 1988: The buoyancy flux from internal gravity wave breaking. Dyn. Atmos. Oceans,
12, 107-125.

Holloway, G., and D. Ramsden, 1988, Theories of internal wave interaction and stably-stratified
turbulence: Testing against direct numerical experimentation. In: Small-Scale Turbulence and Mixing
in the Ocean, J.C.J. Nihoul and B.M. Jamart (eds.), 363-377, Elsevier, New York.

Hopfinger, E.J., 1987: Turbulence in stratified fluids: A review. J. Geophys. Res., 92, 5287-5303.
Itsweire, E.C., K.N. Helland, and C.W. Van Atta, 1986: The evolution of grid-generated turbulence

in a stably stratified fluid. J. Fluid Mech., 162, 299-338.
Kerr, R.M., 1985: Higher-order derivative correlations and the alignment of small-scale structures in

isotropic numerical turbulence. J. Fluid Mech., 153, 31-58.
Kraichnan, R.H., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 1521-1536.
Kunze, E., M.G. Briscoe and A.J. Williams III, 1990: Interpreting shear and strain fine structure

from a neutrally buoyant float. J. Geophys. Res., 95, 18,111-18,125.
Ledwell, J.R., and A.J. Watson, 1991: The Santa Monica Basin tracer experiment: A study of

diapycnal and isopycnal mixing. In press: J. Geophys. Res.
Leonard, A., 1974: Energy cascades in large eddy simulations of turbulent fluid flows. Advances in

Geophysics, Vol. 18, Academic Press, 237-248.
Lesieur, M., 1987: Turbulence in Fluids. Martius Nijhoff Publ., Dordrecht, The Netherlands, p 286.
Lesieur, M., and R. Rogallo, 1989: Large-eddy simulation of passive scalar diffusion in isotropic

turbulence. Phys. Fluids A, 1, 718-722.
Lesieur, M., 0. M6tais, and H. Laroche, 1988: Numerical simulations of turbulent stably-stratified

and free shear flows. (extended abstract), 57-6C, In: Eighth Symposium on Turbulence and
Diffusion, American Meteorological Society, Boston MA.

Lienhard V, J.H, and C.W. Van Atta, 1990: The decay of thermally stratified turbulence. J. Fluid
Mech., 210, 57-112.

Lin, J.T., and Y.H. Pao, 1979: Wakes in stratified fluids. Ann. Rev. Fluid Mech., 11, 317-338.
Lombard, P.N., D.D. Stretch, and J.J. Riley, 1990: Energetics of a stably stratified mixing layer.

Proc. 9th Symp. Turb. Diff., 202-205.
Mansour, N.N., P. Moin, W.C. Reynolds, and J.H. Fertziger, 1979: Improved methods for large

eddy simulations of turbulence. In: Turbulent Shear Flows I, F. Durst, B. Launder, F. Schmidt,
and J. Whitelaw (eds.), Springer-Verlag, 386-401.

Mason, P.J., and S.H. Derbyshire, 1990: Large-eddy simulation of the stably-stratified atmospheric
boundary layer. Bound.-Layer Met., 53, 117-162.



Large-Eddy Simulation of Internal Wave Motions

McWilliams, J.C., P.C. Gallacher, C.-H. Moeng, and J. Wyngaard, 1990: Large-eddy simulations of
oceanic boundary layers. Presented at the International Workshop on Large Eddy Simulation, St.
Petersburg, FL, December, 1990.

Mdtais, 0., 1985: Evolution of three dimensional turbulence under stratification. In: Lesieur, M.,
1987: Turbulence in Fluids. (also presented at Turbulent Shear Flows VI).

Mdtais, 0., and J.R. Herring, 1989: Numerical simulations of freely evolving turbulence in stably
stratified fluids. J. Fluid Mech., 202, 117-148.

Moeng, C.-H., 1984: A large-eddy simulation model for the study of planetary boundary-layer
turbulence. J. Atmos. Sci., 41, 2052-2062.

Moeng, C.-H. and J.C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the
convective boundary-layer. J. Atmos. Sci., 45, 3573-3587.

Mourn, J. N., 1990: The quest for Kp - Preliminary results from direct measurement of turbulent
fluxes in the ocean. J. Phys. Oceanogr., 20, 1980-1984.

MUer, P., 1988: Vortical Motions. In: Small-Scale Turbulence andMixing in the Ocean, J.C.J.
Nihoul and B.M. Jamart (eds.), 285-301, Elsevier, New York.

MUller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal
gravity waves. Rev. Geophys., 24, 493-536.

Munk, W.H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707-730.
Munk, W., 1981: Internal waves and small-scale processes. In: Evolution of Physical Oceanography,

B. Warren and C. Wunsch (eds.), The MIT Press, Cambridge, MA, 264-291.
Oakey, N.S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous

temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256-271.
Orszag, S., 1971: Numerical simulation of incompressible flows within simple boundaries: Accuracy.

J. Fluid Mech., 49, 75-112.
Orszag, S., and G.S. Patterson, 1972: Numerical simulation of three-dimensional homogeneous

isotropic turbulence. Phys. Rev. Lett., 28, 76-79.
Osborn, T.R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J.

Phys. Oceanogr., 10, 83-89.
Osbom, T.R., and C.S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321-345.
Piomelli, U., P. Moin, and J.H. Ferziger, 1989: Model consistency in large-eddy simulation of

turbulent channel flows. Phys. Fluids, 31, 1884-1891.
Ramsden, D. and G. Holloway, 1991: Vortex-wave interactions in stably stratified turbulence.

Submitted to J. Geophys. Res.
Riley, J.J., R.W. Metcalfe, and M.A. Weissman, 1981: Direct numerical simulations of homogeneous

turbulence in density-stratified fluids. AlP Conf. Nonlinear Properties of Internal Waves. B. West
(ed.), 79-112.

Rogallo, R., and P. Moin, 1984: Numerical simulations of turbulent flows. Ann. Rev. Fluid Mech.,
16, 99-137.

Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived
from large-eddy simulations. J. Fluid Mech., 200, 511-562.

Schumann, U., 1975: Subgrid-scale model for finite difference simulations of turbulent shear flows in
plane channels and annuli. J. Comp. Phys., 18, 376-404.

Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of :tr tied turbulence. In:
Theoretical and Computational Fluid Dynamics, T. Gatski and C. Speiale (eds.), Springer-Verlag,
Berlin.



Siegel

Shen, C.Y., and G. Holloway, 1986: A numerical study of the frequency and the energetics of
nonlinear internal gravity waves. J. Geophys. Res., 91, 953-973.

Siegel, D.A., 1988: Large-eddy simulation of the decay of a small-scale oceanic internal gravity wave
field, Ph.D. Dissertation, Department of Geological Sciences, University of Southern California, p
187.

Siegel, D.A., 1991: Large-eddy simulation of steady thermocline motions. In preparation.
Siegel, D.A., and J.A. Domaradzki, 1991a: Large-eddy simulation of the decay of stably-stratified

oceanic turbulence, I: Model development and observations of temporal variability. Submitted to J.
Phys. Oceanogr.

Siegel, D.A., and J.A. Domaradzki, 1991b: Large-eddy simulation of the decay of stably-stratified
oceanic turbulence, II: Characterization of the kinematic and dynamic structure. Submitted to J.
Phys. Oceanogr.

Siegel, D.A,, and A.J. Plueddemann, 1991: The motion of a solid sphere in an oscillating flow: An
evaluation of remotely-sensed Doppler velocity estimates in the sea. J. Atmos. Oceanic Tech., 8,
296-304.

Siggia, E.D., and G.S. Patterson, 1978: Intermittency effects in a numerical simulation of stationary
three-dimensional turbulence. J. Fluid Mech., 86, 567-592.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea.
Rev., 91, 99-164.

Smagorinsky, J., 1990: Some historical remarks on the use of non-linear eddy viscosities in
geophysical models. Presented at the International Workshop on Large Eddy Simulation, St.
Petersburg, FL, December, 1990.

Stewart, R.W., 1969: Turbulence and waves in a stratified atmosphere. Radio Sci., 4, 1269-1278.
Stillinger, D.C., K.N. Helland, and C.W. Van Atta, 1983: Experiments on the transition of

homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech., 131, 91-122.
Tennekes, H., and J.L. Lumley, 1972: A First Course in Turbulence, The MIT Press, Cambridge,

MA., p 300.
Van Atta, C., 1990: Comment on "The scaling of turbulence in the presence of stable stratification" by

A.E. Gargett. J. Geophys. Res., 95, 11,673-11,674.
Vasilopoulos, A., 1991: Volume imaging: A new world view. Comp. Graphics World, April, 63-72.
Washburn, L., 1987: Two-dimensional observations of temperature microstructure in a coastal region.

J. Geophys. Res., 92, 10,787-10,798.
Winters, K.B., and E.A. D'Asaro, 1990, Diapycnal mixing associated with a wave breaking event.

Trans. Amer. Geophys. Union, EOS, 71, 1360 (abstract).
Wyngaard, J. (ed.), 1984: Large-Eddy Simulation: Guidelines for its Application to Planetary

Boundary Layer Research. Report from the Working Group on Large Eddy Simulation, Boulder,
CO., p 122.

Yakhot, A., S.A. Orszag, V. Yakhot, and M. Israeli, 1989: Renormalization group formulation of
large-eddy simulations. J. Sci. Comp., 4, 139-158.

Yamazaki, H., 1990: Stratified turbulence near a critical dissipation rate. J. Phys. Oceanogr., 20,
1583-1598.

Yoshizawa, A., 1982: A statistically derived subgrid scale model for large eddy simulation of
turbulence. Phys. Fluids, 25, 1532-1538.



NUMERICAL MODELING OF THE LARGE-SCALE DYNAMICS OF INTERNAL WAVES
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ABSTRACT

Several issues related to large-scale modeling of internal waves are discussed. First, we consider
the question of the linear internal wave response o'f the ocean to surface forcing. Past attempts at
analyzing the linear response are briefly reviewed. Then we discuss a numerical experiment, in
which a nonlinear model of internal waves generates a time.evolving field of motions in a vertical
plane. The model flow is initially at rest, and is forced with a simple surface-layer body force with
a long (40 km) wavelength. Despite the fact that the model was not initialized with a particular
spectrum, it develops a frequency-wavenumber spectrum with features that are similar to that of
Garrett and Munk. After a saturated spectrum develops, the dispersion of a cloud of Lagrangian
tracer particles is analyzed. The linear dimensions of the cloud expand roughly as the square root
of time. Based on the expansion rate we estimate values for eddy diffusivity coefficients. We find
that these coefficients are independent of length scale, but vary approximately linearly with the
internal wave horizontal kinetic energy. For a kinetic energy level equivalent to that of the
Garrett-Munk spectrum and a stratification N-3 cph, we calculate Kx-0.26 m2/sec,
Kz-2xl 40 m2/sec.

1. INTRODUCTION

Near-inertial waves are the most energetic component of the internal wave spectrum. Therefore it
seems natural to focus (at least initially) on near-inertial waves, to understand their generation,
dynamics, interactions, and dissipation. Near-inertial internal waves have rather long horizontal
length scales (100's of meters to 10's of kilometers) in comparison with higher frequency waves.
Therefore a numerical model of near-inertial waves should span this broad range of length scales.

The problem is even more difficult than this. Surface forcing of near-inertial waves due to
atmospheric events covers an even broader range of length scales-up to iO.s of kilometers.
Certainly a wide variety of mesoscale, upper surface-layer and bottom boundary layer processes
interact with near-inertial waves in this regime of spatial scales. Therefore it is important to try to
sort out the relative magnitudes of all of the different interactions.

My overall objectives are to try to answer three important questions: 1) How are large-scale
internal waves generated? 2) Once they are generated, how are their space and time scales
maintained? 3) How do these waves interact with, and contribute to the mixing of, mesorcale
flows?

Because the questions are still largely unanswered, I am following a multi-pronged approach. The
first approach, discussed in Section 2, is to determine the extent to which linear dynamics are
capable of generating the internal wave spectrum, A body of circumstantial evidence indicates that
many of the characteristics of the internal wave field can be explained using linear mechanisms.
The next approach, discussed in Section 3, i, to determine whether wave-wave interactions are
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sufficient to generate the interpal wave spectrum, and over what time scales does such a spectrum
de celop and decay. Then results of some experiments related to the mixing of a passive tracer are
presented in Section 4. The space-plus-time trajectories of Lagrangian tracer particles are
calculated, and give us some insights into the mixing process.

2. LINEAR DYNAMICS OF GENERATION

It is known that wind-forcing is an important generator of near-inertial motions. Simple linear
models of wind-induced inertial motions are sometimes able to explain a very large percentage of
the inertial energy in the surface mixed layer. Sometimes these models fail in their deterministic
predictions, for a variety of reasons. The reasons may include, for example, incomplete knowledge
of the full wind field (its history and its spatial scales), mesoscale motions which interact with the
inertial motions, inertial waves which have propagated from a distant source, and so on.

An important question which arises is, to what extent can linear dynamics explain the generation
of near-inertial waves, and perhaps, the genration of the entire spectrum of internal waves. As far
as near-inertial waves are concerned, there is a body of evidence that linear dynamics are
sufficient. For example, Rubenstein (1983) showed that obse.rved features related to vertical phase
propagation and interchange of energy between the surface layer and the thermocline can be
explained with linear dynamics. Kundu and Thomson (1985) showed that linear theory can explain
the observed intermittency of near-inertial waves, and the horizontal phase structure of surface-
layer oscillations. Gill (1984) presented a linear theory which explained many other features of
near-inertial waves, such as the tendency for horizontal and vertical scales to decrease after a
storm has passed. Eriksen (1988) examined the linear response of near-inertial waves to a wind
stress which deposits a body force as a step function in the vertical; uniformly within a surface
layer, and zero below. He found that the vertical wavenumber spectral response is the same as
that predicted by the GM81 empirical spectrum.

In a sense, our understanding of the vertical scales of internal waves is much better than that of
the horizontal scales. High-quality vertical profiles are easier to produce than horizontal
profiles-especially profiles of velocity. Also, there are major gaps in our 2D+time description of
the wind stress field. There have been several attempts to jump over these gaps.

Several years ago I performed a little study, in which I looked at the patterns of near-inertial
motions generated in the surface layer. I digitized a couple of months of 6-hr synoptic weather
maps in a 2600-km square region of the North Atlantic, roughly from 35°N to 60°N, and from
15°W to 50°W. I gridded the isobars and computed the geostrophic wind, adjusted for friction and
for turning effects. Figure 1 shows an example of one such map. I used a very simple slab model
for the mixed layer (uncoupled in the horizontal), and observed the patterns of near-inertial
oscillations. Figure 2 shows a single snapshot of the u-component of velocity, after 40 days of
evolution. There seems to be a notable difference between the northern and southern regions of
the model domain. The northern half is dominated by propagating low-pressure systems. The
wave pattern orientations and length scales are variable, on synoptic time scales. In contrast, the
southern half of the model domain is dominated by a climatological high pressure system. As a
result, the wave pattern is more static. The wave patterns tend to be elongated along latitude
lines, because of the beta effect.

D'Asaro (1989) used an imaginative technique to bridge the wind-field problem. He used a Seasat
scatterometer wind stress field, with 25-km resolution, and advected the field across the modeled
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Figure 1. Left panel: Sample weather map over central North Atlantic. Right panel: Digitized,
contoured iobars, and geostrophic wind adjusted for friction and turning effects.

ocean. In this way he was able to estimate the relative contributions of the wind field, the
advection speed, and the beta effect, in generating smaller horizontal scales of near-inertial waves.

The problem with these approaches is that niesoscale and smaller-scale variance in the wind stress
field is deficient. I've been developing a possible remedy to this problem. The approach is to
start with an atmospheric mesoscale mod6i, and to p --fjrm a stochastic interpolation in time and
space, to resolve higher wavenumbers and irequencies. This is a sort of engineering approach, but
if it yields a statistically realistic evolving wind field, it could give meaningful results.

3. NONLINEAR MODEL

If we apply an intermittent, large-horizontal-scale wind-induced surface forcing to a nonlinear
model, what sort of internal wave spectrum develops? Over what time sc~ie does such a spectrum
develop, and after forcing is removed, over what time scale does it dissipate?

In an attempt to answer these questions, we formulate a two-dimensional model in a vertical x-z
plane. Motion is allowed in three directions, but the model is invariant in the y-direction. We
assume an initially motionless ocean, with an exponentially decaying buoyancy frequency, and a
fluid which satisfies the Boussinesq approximation. The lateral, top and bottom boundary
conditions are reflecting.

The coordinates (x,y,z) are defined with z positive upward, with the origin at the ocean bottom. A
channel of depth D= 1 km (corresponding to a flat ocean bottom) and width X=20 km contains
the flow. The equations of motion are
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Figure 2. U-component of velocity in the surface layer, predicted by a simple slab model. The
spatial domain is a 2,620 km square region, as shown in Fig. 1. The contour interval is 4 cm/se :.
The elongation of structures along latitude lines is due to the beta-effect. The longer length scales
in the northern half of the domain is due to the rapid, successive propagation of atmospheric
fronts.

a: a.+ wazu -f = -x + c a + a + F (1)

a1v + u8av + w a~v + fu:+ ~v+ ~ (2)

a1b + uap + w + N2w, = + ,,xab + ica,,(b,+B) (3)
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au aw

+ -= 0 (4)
ax az

? - b (5)
az

2 aBN=. B =B+b (6)

The velocity components are (u, v, w), p is a reduced perturbation pressure, N= (3 cph) xeIz/13° is
the buoyancy frequency profile, and f is the Coriolis parameter. The total buoyancy BT is split up
into a steady, initial profile B(z) and a perturbation buoyancy b. The Kx and zz terms are

diffusivity coefficients, and are uniform in space. A rigid lid leads to an additional constraint, that

D

Sudz = 0 (7)

The model is driven by a body force distributed in the surface layer of depth H. The body force
has a single, large-scale horizontal sinusoidal component, and is given by

F(x,z,t) = F(t)sin(wx) ![+sin(n 2 )J . (8)
X 2 2ff

The behavior of F(t) simulates a short-duration impulse. During an initial spinup period, these
impulses were applied at regular intervals of 5.5 inertial periods. After the wavenumber spectrum
is saturated, the forcing is turned off, and the flow is allowed to decay.

The diffusion coefficients xx and icz are chosen to have the minimum possible values, and still
maintain numerical stability. During the spinup period, we set =0.1 m2/sec and -= 10.4 m2/sec,

and during the decay period we set ,=0.05 m /sec and xz=5x10' m2/sec. We find that during
the decay period, energy dissipates with an e-folding time scale of about 30 days. This time scale
falls within the 15-44 days time scale estimated for the replenishment of the internal wave field
(Gregg, 1987).

Spatial derivatives are approximated by centered differences, and time integration is performed
using the two-step Lax Wendroff technique. The finite difference equations are solved on a
128x128 grid, using a time step of 12 seconds. The artificial viscosity associated with this
numerical technique is given by (Roache, 1972)

Cart =i u2 t/2 (9)

In the model runs presented here, this artificial viscosity is less than a quarter of the explicit
diffusion coefficients, in both the horizontal and the vertical.

Figure 3 shows spectra of kinetic energy in two projections; w-k, and w-kz, where o is frequency,
kx is horizontal wavenumber, and k, L v ,rtical wavenumber. We first consider the (,)-kz spectrum.
The strongest ridge parallel to the kz axb corresponds to near-nk.,rtial waves. The next-strongest
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Figure 3. Kinetic energy spectrum, predicted by the nonlinear numerical model. The top panel
shows a projection in wo.k x space, and the bottom panel shows 6).k z .

ridge, at a slightly higher frequency, corresponds to the first vertical mode. 'Me weaker, higher-
frequency ridges correspond to harmonics. In the ow-kx spectrum, we see some of the same
features, but in addition we see a set of radial ridges. The radial ridges are the projections of

discrete vertical modes onto the co-k x spectrum.
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It is also interesting to note that the co-k z spectrum appears to be nearly (but not exactly)
separable between c and kz, while the (o-kx spectrum is not remotely separable in to and kx . This
feature of separability in w-kz and non-separability in w-kx is similar to that of the Garrett-Munk
spectrum (for example, Munk, 1981). The feature is somewhat at odds with the slant-wavenumber
frequency spectrum observed by Pinkel (1984). Pinkel's wavenumber spectra in the upper ocean
exhibit slopes which flatten with increasing frequency.

On the other hand, both the modeled w-kz spectrum and Pinkel's (1984) observed spectrum show
a set of ridges parallel to the kz axis. In the case of the model, these ridges represent harmonics
between the lowest vertical modes of the near-inertial frequency waves. In the case of Pinkel's
observations, these ridges represent possible harmonics between tidal and inertial frequency
motions. In both model and observations, these ridges stand out at low wavenumber, but not at
high wavenumber.

4. DISPERSION OF LAGRANGIAN TRACER PARTICLES

Eddy viscosity and diffusivity coefficients are employed by ocean circulation models, for the
purpose of parameterizing sub-grid scale mixing processes. Much of this sub-grid scale mixing is
due to the internal wave field. Several techniques have been developed for the estimation of
diffusivities. Direct observations of internal waves (Ruddick and Joyce, 1979; Brown and Owens,
1981; Kunze, 1986; Hebert, 1987) use the eddy correlation technique to derive eddy viscosity and
diffusivity. Sometimes even the sign of the derived viscosity or diffusivity coefficients is in doubt.
These direct observations are limited because in the thermocline, eddy correlation signals are
weak, and they are disturbed by non-stationarity of the mean flow.

Other techniques for estimating viscosity and diffusivity parameters are extensively reviewed by
Gregg (1987). These techniques include inverse methods over regional domains, flux estimations
from microstructure measurements, compilations of statistics of mixing patches, and direct
measurements of dye patches (Ewart and Bendiner, 1981; Ledwell, 1989).

One technique that has not yet received much attention is numerical simulations. Numerical
simulations have the advantage that they are capable of separating the diffusion due to internal
waves from that of mesoscale motions. They also allow sensitivity studies to systematic parameter
variations, and of course, allow complete understanding of the underlying flow field. On the other
hand, full nonlinear models have the significant disadvantage of covering a limited range of length
scales. Another limitation is the lack of direct control over the spectral level and shape.

To help understand mixing due to internal waves, we consider the dynamics of Lagrangian
particles. Figure 4 shows the trajectories of nine individual Lagrangian particles over an 8-day
interval. The particles are tracked between the grid cells using bilinear interpolation. The
horizontal extents Ax of the tracer trajectories are on the order of 1 to 4 kin, and the vertical
extents Az range from 30 to 80 m.

We are not interested only in the absolute dispersion of a tracer particle; we are interested in the
relative dispersion of a cluster of particles. The four panels in Figure 5 show the positions of 1000
tracer particles at four instances in time; 1.6, 3.3, 6.6, and 11.6 days. The thick circle in each panel
(actually an ellipse in physical space; major axis=312 m in the horizontal, minor axis= 15.6 m in
the vertical) indicates the initial distribution of the particles. In each panel, the portrayed
positions of the particle clouds have been translated to keep the centers of mass coincident with
the centers of the panels. At the early times, the particles remain organized in stringy clumps. At
the later times, the particles separate from one another, and their positions become more random.
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Figure 4. Trajectories of nine individual Lagrangian particles in a vertical plane, due to modeled
internal waves over an 8-day interval when the model was quite energetic.

In each panel, a thin-line ellipse is drawn to indicate the standard deviation of the particle
distribution in two orthogonal directions. The size of the ellipse tends to increase with time. By
11.6 days, the ellipse has increased by a factor of 5.5 relative to its initial size. The eccentricity
does not have a noticeable trend with time.

To obtain a statistical average, we constructed a hierarchical grid of clouds of Lagrangian particles.
A 5x5 grid of cloud centers was placed in the central area of the model domain. These clouds
were initially circular in the finite grid space, and therefore elliptical in physical space. A
hierarchy of 5 initial cloud sizes allowed a larger range of spatial scales to be examined. We
traced the trajectory of each particle, and computed the ensemble average variance of the cloud
distributions (segregated by initial cloud size) in the horizontal and vertical directions.

Figure 6 shows the average cloud distribution variances in the horizontal and vertical directions.
Both panels in the figure show a set of five curves, each corresponding to a different initial cloud
radius. The thin, oscillating curves represent the ensemble-averaged distribution variances, and
the thick, smooth curves represent low-pass filtered time series, with a 1-day time constant. For
the first 8 days, the variance increases approximately linearly with time. From this rate of
increase, we can estimate the effective eddy diffusion coefficients in the horizontal and in the
vertical,

1 do 2

1 d x2 - 0.7 m2/sec
2 dt

(10)

1 daz2 ,5x10-4 m2/secKz -d 54t 2/e

2 t 3 4 8
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Figure 5. Relative dispersion of 1000 tracer particles in a vertical plane at four instants in time;,
1.6, 3.3, 6.6, and 11.6 days. The thick curve in each panel (appears as a circle in this compressed
coordinate space) is the locus of the initial distribution of particles. The thin-line ellipse in each
panel indicates the standard deviation of particle distribution, in two orthogonal directions.

After 8 days, the variance increases more slowly (Kx~0.3 m2/sec, Kz~3XlO 4 m2/sec). This occurs
because kinetic energy is slowly dissipating (the rms u-component of velocity has decreased from
7.5 to 6 cm/sec), and the rate of expansion of the cloud size is very sensitive to the kinetic energy
spectrum.
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Figure 6. Thin curves: Ensemble average tracer cloud distribution variances in the horizontal and
vertical directions. Thick curves: Time-average (1 day time constant) which smooths out the
oscillations due to isopycnal deformations.

Despite the gradual decrease in expansion rate of the tracer clouds, the distribution variances for
the various initial cloud sizes are all parallel to one another. The implication is that although the
rates of increase da 2/dt and daZ2/dt are sensitive to the kinetic energy spectrum, they are
independent of ax and az2. In other words, the effective eddy diffusivities are independent of the
length scales involved. This result is in contrast with Okubo's (1971) finding that horizontal
diffusivity increases with length scale to the 1.1 power. We must keep in mind that the
observations compiled by Okubo include the effects of the entire, complicated spectrum of ocean
velocities. The numerical prediction that eddy diffusivity is independent of length scale is largely
due to the facts that only internal wave motions are included, and that tracer cloud length scales
fall within the internal wave spectral continuum, which has a rather constant slope over a wide
range of wavenumbers.
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The short term oscillations in Fig. 6 represent deformations of the tracer clouds, associated with
isopycnal straining and tilting. The ensemble average over sets of independent tracer clouds has
removed a portion of the isopycnal deformations. The time-averaged, smooth curves have
removed the residual deformations, and represent true diapycnal (across density contours) and
isopycnal (along density contours) mixing.

Horizontal and vertical diffusion coefficients are plotted in Figure 7, as a function of rms
horizontal velocity. These coefficients were estimated at different times during the model
integration, as the energy level dissipated. Best fitting quadratic coefficients were estimated;

K =540"2, K = 0.042o 2  (11)

where au is the rms horizontal velocity. At the buoyancy frequency N=3 cph, the Garrett-Munk
spectral energy level yields Ou-7 cm/sec, and from Eq. (11) we get Kx-0.26 m2/sec and Kz-2x10 4

m2/sec. A quadratic fit of Kx and Kz to °u seems to be reasonable; therefore the eddy diffusion
coefficients vary approximately linearly with horizontal kinetic energy.

The results of this study can be compared with recent measurements of ocean tracers. Ledwell
(1989) measured the diapycnal spreading rate of a tracer, and deduced an approximate value
K,~-3xO m2/sec, in the Santa Monica Basin. During the experiment, the buoyancy frequency
was about 1 cph, and the rms internal wave velocity (excluding the low-mode, semidiurnal internal
tide component was approximately au=3 cm/sec. Substituting this value into Eq. (11), we get
Kz=3.8xl0 "5 ml/sec, in good agreement with the measured value.
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Figure 7. Horizontal and vertical diffusion coefficients, as a function of rms horizontal velocity
associated with internal waves.
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In another dye spreading experiment performed by Ewart and Bendiner (1981), several types of
diffusion were computed. Assuming Fickian diffusion, estimates for Kx ranged from 0.03 to
0.12 m2/sec. A local estimate of K -10- 6 m2isec was observed associated with edge gradients, and a
global value of about 5x10 5 m2/sec was associated with total patch thickness. Assuming a
Garrett-Munk energy level at N= 1 cph, these estimates should be compared with model
predictions of Kx-0.08 m2/sec and Kz=7x10 "5 m2/sec.

The randomization of particle positions shown in Fig. 5 implies that the perimeters of the particle
clouds become increasingly convoluted with time. Figure 8 shows the perimeters of four clouds of
particles, initially concentric ellipses. The length scales eventually become shorter than the grid
cell resolution. Even though the perimeter of a tracer cloud becomes increasingly convoluted with
time, the buoyancy field does not. As soon as a buoyancy field kink develops to a sufficiently
short scale, the explicit diffusivity parameterization in Eqs. (1)-(3) smooths the kink out. In this
way the tracer particles, which are not directly affected by the explicit diffusivity, become
disassociated from any specific isopycnal surface. Strong internal wave motions generate these
"kinks" more rapidly than do weak motions, and therefore diapycnal mixing is more rapid. The
exact values of the explicit coefficients icx and xz are not critical to the effective eddy diffusivities.
In an experiment where -x and N were doubled in value, the energy level decayed more rapidly,
so the effective eddy diffusivities Kx and Kz likewise decreased in magnitude.
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Figure 8. Four clouds of tracer particles were released into the numerical model, in initial
concentric elliptical distributions. The outlines of these clouds are indicated by the inner and
outer perimeters of the shaded areas.
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In order to attain physical intuition into the diffusion mechanism, Young et al. (1982) developed
analytic models of advection-diffusion. Young et al. modeled cases where a vertically sheared
horizontal velocity field advects a tracer. Given tracer diffusivities X and K, an additional
effective horizontal diffusivity develops due to the interaction of the vertical shear and x.
They assumed a value of ;-10"- m2/sec, and for a particular model shear spectrum derived

Kx -; , 1300 .. - 0.013 m2/sec (12)

The physical mechanisms incorporated into the numerical model are different from those analyzed
by Young et al. (1982). The numerical model explicitly includes vertical velocities, and implicitly
develops an effective vertical diffusivity Kz. If we were simply to substitute the value of the
diffusion coefficient ;=5x10"5 m2/sec-which was used in Eqs. (1-3)-into Eq. (12), then we
would obtain an effective diffusivity Kx much smaller than numerically computed values. On the
other hand, if we combine the expressions in Eq. (11), we get the relationship

rx = 54/0.042Kz = 1286K z . (13)

If we acknowledge that nonuniform, nonstationary vertical velocities in the numerical model
generate an effective eddy diffusivity Kz in addition to xz, then we see that the results expressed in
Eqs. (12) and (13) are quite comparable.
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PARAMETERIZING MIXING IN INVERSE MODELS
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ABSTRACT

The conservation equations for scalars are developed in forms that are suitable for use in inverse
models and with emphasis on the ways in which mixing processes are represented. The difference
between the lateral Lagrangian and Eulerian velocity vectors is discussed and a suitable parameterization
for the difference velocity (the Stokes drift) is proposed. The conservation equation for potential
density is developed and is shown to be much more complicated than the normal diapycnal advective-
diffusive balance. The extra terms that have not previously been included are often as large as the more
obvious terms that have been retained in the past. In order to be able to draw comparisons with
previous inverse models, the scalar conservation equations are developed with respect to potential-
density surfaces rather than neutral surfaces. The differences that arise here are due to the lateral
mixing being directed along neutral surfaces rather than along potential-density surfaces, and again the
extra terms can be surprisingly large. The conservation statements for spiciness and Veronicity have
their own set of problems since these variables are as nonlinear as is potential density.

The special problems that can beset box inversions are then described, including the need to include
vertical diffusion as well as interfacial advection. For the purpose of deducing information about
vertical mixing, perhaps the most serious failing of previous box-model inversions has been the
masking of the information contained in the scalar conservation equations (particularly the salinity
equation) by noise in the continuity equation. This has led previous workers in this field to conclude
that vertical mixing was not needed by their inversions even when the results had strong diapycnal
advection. A solution is suggested to overcome this problem with the divergence form of the
conservation statements.

INTRODUCTION

Due to increasing societal pressure to predict the impact of the Greenhouse Effect on future climate, the
role of the ocean in climate change is becoming more widely acknowledged and the subject of greater
study. On the timescales of decades to centuries, the intermediate and deep waters of the ocean play a
crucial role in the complicated feedbacks between the ocean and the atmosphere, and the circulation at
these depths is intimately linked to the existence of vertical mixing processes (Bryan, 1987). We do
not yet know how the strength of this mixing is regulated .or whether it is widely distributed in space
or localized in small regions such as near topography. Fe, these reasons it is increasingly important to
use all methods at our disposal to deduce the strength of vertical mixing processes. One such method is
to apply inverse procedures to hydrographic and tracer data to infer the strength of mixing processes
that must have been present to cause the observed three-dimensional tracer pattems.

Much of the effort on oceanographic inverse models has been directed to determining the time-averaged
circulation of the ocean, and so the models have concentrated on using the thermal wind relation in
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conjunction with the continuity equation or the conservation of potential vorticity to solve for the lateral
velocity vector for every station-pair at some (deep) reference level. Much less effort has been spent on
using these techniques to deduce the magnitude of mixing processes in general, and the vertical
diffusivity in particular. Three recent papers that have made substantial progress in this direction are
Olbers, Wenzel and Willebrand (1985) and Hogg (1987) that have both been based on the -spiral
technique, and Schlitzer (1988) that has used the box-inverse technique. Another paper that was not
only successful in detecting oceanic mixing, but was also able to distinguish between two different
types of vertical mixing processes (salt-fingering and vertical eddy diffusion), is that by Bauer and
Siedler (1988). This paper used the form of the conservation equations that did not explicitly include
dianeutral advection, end so ensured that there could be no confusion in their model between dianeutral
advection and dianeutral diffusion. While their work is not a full inversion in the sense that it did not
solve for the velocity components simultaneously with the mixing parameters, I hope that it is typical of
the results we can expect when inverse models are set up specifically with mixing processes in mind.

There is a distinct advantage in determining vertical diffusivities from hydrographic data as compared
with determining the strength of lateral mixing processes. This advantage is due to the large separation
of vertical scales between the small vertical scale at which the mixing processes act (of order 1 m), and
the large vertical scale on which either an inverse model or a forward model is constructed (of order
100 m). Because of this large separation of scales we can expect that any answer that we believe for
the vertical diffusivity from an inverse model will also apply to a forward model since the vertical scales
in both models are so much larger than the scales of the mixing processes. A similar favorable ratio of
relevant scales does not apply to lateral mixing processes so that one cannot be sure that a lateral eddy
diffusivity that one obtains from an inversion using data at a certain horizontal spacing will be
applicable to a forward model that has its grid points at a different horizontal resolution.

The paper begins with a review of the conservation equations for scalars in the neuti,! surface
framework and goes on to derive a parameterization for the lateral bolus transport or Stokes velocity.
Then, in order to compare what has been done by previous inverse modellers, the conservation
equations for scalars are derived when mixing is performed with respect to potential-density surfaces.
Many extra terms arise due to the different slopes and curvatures (in xy,z space) of potential-density
surfaces and neutral surfaces. These terms are often not negligible. An additional set of problems can
arise when using the divergence form of the conservation equations, as is necessary in box-model
inversions. The straightforward use of a salinity conservation equation in these box models seldom
finds mixing processes to be important, even though the /-spiral techniques, using data from the same
region, are able to detect the influence of ocean mixing. We show that this is most likely because the
salinity conservation equation is dominated by uncertainty in the net volume flux into or out of the box.
A suggestion is offered to overcome this problem, thereby increasing the rank of the solution and
allowing mixing information to be recovered from the inversion.

A REVIEW OF SUITABLE CONSERVATION EQUATIONS FOR INVERSE MODELS

Since the lateral mixing by mesoscale eddies is believed to occur along neutral surfaces, it is convenient
to develop the conservation equations in this reference frame. The vertical turbulent property fluxes are
then parameterized by a vertical diffusivity, D, acting on the vertical property gradients, but the lateral
turbulent fluxes are parameterized separately on the basis of a further Reynolds decomposition
performed in this section. The continuity equation, V u = 0, and the divergence form of the
conservation statement for a tracer, C, are integrated over the thickness, h, between two neutral
surfaces (see Figure 1), to obtain
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Ah + -,n(hV) + eU- el =0 (1)

and d(hCA,dh + Vn(hVC) + [eC]t = [DC,]'. (2)
dt

Here C is any conservative scalar variable (including S and 0), e is the vertical velocity of fluid through
the neutral surface (henceforth called the dianeutral velocity), V is the instantaneous two-dimensional
horizontal velocity vector, and V n is the two-dimensional lateral gradient operator for properties
measured in the neutral surface. The exact nature of the geometrical transformation between the
Cartesian and neutral surface reference frames is explained ia McDougall (1987a). The superscripts u
and I refer to the upper and lower neutral surfaces, as in Figure 1.

z"I

x (East) Two neutral surfaces

Fig. 1. Sketch showing two neutral surfaces separated by a height h(xy). Mixing
processes can cause fluid to flow vertically through these neutral surfaces with the
velocities e' and e .

Now we specifically allow for the lateral eddy motions by performing a Reynolds decomposition on the
lateral velocity vector and on the scalar fields. The quasi-Lagrangian velocity vector is defined as

VL = VE + ""(-,3)

h
(called "quasi-Lagrangian" because, while V follows the average iosition of marked fluid parcels
along a neutral surface, it doesn't follow the dianeutral motion). V is the usual Eulerian average
velocity vector ar would be measured by a current meter at a fixed position. Reynolds decomposing all
the variables in (1) and (2) and averaging yields

7 +v.i ) + e- e' =0 (4)

and
+ dR7 V . ( -VLU) + [-eM +W - vE.{ + ) vW +

++ + +V Efit dt (5)
+

Note that the mean value of C that appears in Eq. (5) is the Eulerian average value, not the quasi-
Lagrangian value that would be defined in a similar way to Eq. (3). We are very likely to be justified in
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assuming tat the triple correlation term on the right-hand side of Eq. (5) is quite small, and probably
also h'C' VE << C'-Vh (Rhines, 1982) but in any case, we will assume that the lateral diffusivity,
K, of a scalar is defined by

- xVn =_ + + h'C'V'}. (6)

If the term d[WCI]/d is taken to be zero, the divergence form, Eq. (5) simplifies to

V,.(hVLC) + [eC] = Vn.(hKVC) + [DC , (7)

where the overbars have been dropped from all the variables, while the continuity equation is

A + Vn-(hV L) +[e]u =0. (8)

The advective form of the conservation equation for C is found by letting h tend to zero so that

[eC] -* h[eC],, [e]' - he,, and [DC,]u - h[DC],, and combining Eq. (7) and Eq. (8), so that

Icn+VL.VnC +eC, = h-'V,.(hKVnC) + [DC2]. (9)

This conservation statement (and also the divergence form, Eq. (7)) holds for any conserved scalar
quantity including salinity and potential temperature. The conservation statements for potential vorticity
take different forms since potential vorticity is not mixed vertically in the same manner as a conservative
tracer. Potential vorticity conservatioa statements are not discussed in this paper.

The spatial gradients of 0 and S along a neutral surface 1nd also their temporal derivatives on a neutral
surface are related through the thermal expansion coefficient, a, and the saline contraction coefficient,
/3, so that

aOtln = 3S n , and aVnO = I3VnS. (10)

Using these relations and the advective conservation statements for S and 0, Eq. (9), one finds

oI + [vL h-' V.I(hK)].VO = KV O + DgN- 20 dO2  (11)nz dO ' 011)

+ KgN- 2 O{CbVnO.VlO + Tb VnO-Vp},

and
[e-D] [aO,-S] = D[aO,,-S 2 ] - K{CbVnO.VO + TbVflO.Vp}, (12)

where Cb and Tb are the cabbeling and thermobaric parameters respectively, defined by

a ada a2 d 1 da a do3
C= " +2"-- -- _ and Tb= .--- _

Ld p S p32 dSJ [Idp 0 dpI
Typical values are 10-5 K-2 for the cabbeling parameter and 2.6x10- K- ' (db) - ' for the thermobaric
parameter.

If one were able to measure the Lagrangian rate of change of a fluid property, say potential temperature,
following a fluid parcel, vertical mixing with diffusivity D would cause the parcel's potential
temperature to change at the rate [DO,],. However, since we are only able to ob, ,rve the ocean after a
series of mixing processes has occurred, this Lagrangian approach cannot be pursued. By using the
neutral surface reference frame, the vertical advection caused by vertical mixing can be accuratel
identified (Eq. 12) and then eliminated from the conservation equations in the form of Eq. (11).
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Vertical mixing processes affect the conservation statement both through the non-advective diffusion of
tracer and also through dianeutral advection. The ratio of dianeutral diffusion to dianeutral advection is,
in general, different for different tracers.

It is important to realize that the dianeutral advection, e, is not a separate mixing process in its own
right. Rather, e occurs simply because of the vertical diffusivity, D, and also due to cabbeling and
thermobaricity. Once these physical mixing processes are specified and the hydrographic fields are
known, e follows directly from Eq. (12). Eq. (11) is the appropriate form of the 0 conservation
equation for water-mass analysis since such studies are performed in property-property space and are
inherently not fully Lagrangian. Vertical mixing by small-scale (isotropic) turbulence causes
observable changes of fluid properties only if the relevant property-property plots are curved. Eq. (11)
is sometimes called a water-mass transformation equation, since the temporal change of potential
temperature on a neutral surface is equivalent to a change of the S-0 curve of a water-mass.

The reason for concentrating on the advective form of the conservation equations in neutral surfaces is
because scalar properties are usually measured with high precision and so one can detect quite small
changes in property-property diagrams (like the S-0 curves), and a change in such a property-property
diagram is equivalent to a change on some kind of density horizon such as a neutral surface. In their
divergence forms, the conservation equations contain not only the information of how mixing
processes change properties along neutral surfaces, but they are also affected by the temporal change of
the volume of the control volume, and the uncertainty in the volume fluxes into and out of a control
volume bounded by two neutral surfaces. This volume is never well known in oceanographic
observations because internal waves and mesoscale eddies cause large vertical excursions of neutral
surfaces and so cause a large temporal variability of the height between neutral surfaces. However,
these same wave-like processes dc. 'lot change the property-property diagrams at all, and so these
diagrams and the advective conservation equations in the neutral surface framework contain information
that is sensitive to mixing processes and insensitive to the vertical heaving motions caused by internal
waves and the like.

A simple scale analysis of the potential temperature conservation equation, Eq. (11), can reveal the
magnitude of cabbeling and thermobaricity in relation to the epineutral mixing of 0 by the lateral
Laplacian term. At a thermoclinic front the magnitude of the epineutral Laplacian scales as the lateral
gradient divided by the half-width of the front, L, that is, !V 20 IVoo/L. Setting half the
epineutral 0 andp contrasts across the front equal to AO aiud Ap respectively (AB = LIV01 and
AS = LIV,,sl), we find from Eq. (11) that

KgN-2B, {CbVOB V, B +T, V,,B V,,p}/KV20BR I C {AB ± .AP

1R"-iJ{1A ± 3xl04'Ap}. (13)

R, -1

In the Antarctic Circumpolar Current where Rp is about 2, AO is about I K, and Ap is about 500 db
(and in the same sense as AO), Eq. (13) is about 0.5, implying that the peak contribution of
thermobaricity aid cabbeling to water-mass conversion is 50% of the peak contribution of the
epineutral Laplacian term. However thermobaricity and cabbeling are much more important than this
comparison suggests because the epineutral Laplacian term changes sign across the front and so
averages to zero in the frontal region, while cabbeling and thermobaricity contribute a term of the same
sign across the whole front.
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SUGGESTED PARAMETERIZATION FOR THE BOLUS TRANSPORT

The conservation equations that have been developed above have all included the bolus transport, h'V',
of volume along neutral surfaces. This is equivalent to recognizing that in both the advective and
divergence forms of tracer conservation statements, the relevant velocity vector is the Lagrangian-mean
velocity, not the Eulerian-mean velocity (Rhines, 1986, p 121). The difference between Lagrangian
and Eulerian velocities in the dianeutral direction does not arise since the coordinate frame is already
quasi-Lagrangian in this direction. The prefix quasi- is used to indicate that the coordinate frame does
not quite move with the fluid: the difference being the dianeutral velocity, e. This means that the
dianeutral velocity, e, is inherently a Lagrangian velocity component with respect to neutral surfa -e
coordinates. The lateral velocity vector that a current meter would measure at a fixed point is the
Eulerian lateral velocity, V E, whereas the mean lateral velocity of a patch of dye or a cluster of floats is
the Lagrangian velocity, V , which is the sum of the Eulerian velocity and the Stokes drift, h-'h'V'.
In Cartesian coordinates, this bolus transport arises as a skew diffusion tensor when the diffusion
tensor contains antisymmetric terms (Haidvogel and Rhines (1983), Rhines (1986), and Middleton and
Loder (1989)).

The geostrophic and thermal wind equations relate the Eulerian velocity to the pressure and in-situ
density fields, while the above equations show that it is the Lagrangian velocity vector that appears in
the continuity and tracer equations (in both the advective and the divergence forms). To date inverse
models have not distinguished between the Eulerian and Lagrangian lateral velocity vectors, and we do
not yet know whether the distinction between these velocity vectors is significant in the ocean. In this
section a parameterization is suggested for the difference velocity, the Stokes drift, VS = VL - VE'.
By trying this parameterization in inverse models we may be able to deduce the importance of the
Stokes drift in the conservation of tracers.

In a quasi-geostrophic layered eddy-resolving model, Holland and Rhines (1980) have found that the
eddy flux of potential vorticity is directed down the lateral gradient of mean potential vorticity, and that
this eddy flux is dominated by the thickness flux. The only exception to this was in the western
boundary current where the eddy relative vorticity flux was larger than that due to the bolus transport.
The eddy flux of relative vorticity was much smaller, had smaller spatial scales and was both up and
down-gradient at different locations. Brown, Owens and Bryden (1986) have used the LDE (Local
Dynamics Experiment) current meter data of POLYMODE to determine both the eddy flux of relative
vorticity and the thickness flux of potential vorticity at depth of about 600 in.. They found that the
thickne..- flux of potential vorticity was an order of magnitude larger than the eddy flux of elative
vorticity, and that the thickness flux of potential vorticity was directed almost exactly down the large-
scale lateral gradient of potential vorticity (i.e. in the sense of a positive diffusivity, that is, in the
direction of - V (f/ho)). The lateral diffusivity of potential vorticity that is implied by their
measurements is about 600 m 2 s - 1. Since q'V' - qh-h , the Stokes velocity, h-h'V', was
directed up the epineutral gradient of potential vorticity. Their observed thickness flux of potential
vorticity is equivalent to a Stokes velocity, h-hV', of about 1.5 mm s- 1.

The observation from both quasi-geostrophic ocean models and from the LDE measurements of Brown
et al (1986) that the thickness flux of potential vorticity is directed down the lateral q gradient suggests a
parameterization for the eddy flux of potential vorticity as being minus a diffusivity times the epineutral
gradient of potential vorticity. Because of the difficulty in Reynolds decomposing q f / h, (since h is
in the denominator), and because h and h' do arise unavoidably in the continuity equation, I denote the
reciprocal of q as a new variable, r, and assert that the thickness flux of r is directed down its lateral
gradient, so that
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r'V'' =-BVn = -BVn['h/f], where r h/f, F= h/f, and r'= h'/f. (14)

For small amplitude perturbations, this is equivalent to the more obvious q'V' = - BVn t

parameterization, but at large amplitude when h'/h is not small, it is not clear how to link q' and 4 to
h' and h. With this parameterization of the epineutral flux of r due to eddies, the bolus flux is given by

IVS= VL - VE = h'-'-YV = BV,[In4] = -BVn[inh ] + [#/f ]Bj, (15)

where =_ F-1 = f/h. The overbars will henceforth be omitted from averaged variables. Since the
magnitude of the neutral-surface potential vorticity generally increases towards the poles, the Stokes
velocity will often be directed poleward.

The lateral advection term in the scalar conservation equations contains the combination of terms,
Vt - h-' Vn(hK), and this can be most readily expressed as (using the geometrical identity
V,[enh] = d[VnN]/dz where Njx,y] is the height of a neutral surface)

V- h- ' V n(hK) VE - [B + K]d[VnN]/dz - VnK + [/l/f]Bj. (16)

0. 0.36 0.86 1.5 2.5 3.7 5.4 7.8 11. 15.

Fig. 2. Map of the magnitude of the lateral Stokes velocity, VS, as given by Eq. (15), on a neutral
surface that lies at about 1200 m in the equatorial Pacific (where uo is about 27.5), and with the lateral
diffusivity, B, equal to 1000 m2 s- 1. The grey-scale covers the range from 0-15 mm s- 1 and is -venly
spaced in en(1 + Iv I)
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Following Rhines and Holland (1979) we take the lateral diffusivity of potential vorticity to be equal to
that of passive scalars, that is, B = K, so that

I[VL - h-' V(hK)]= VE - 2Kd[VN]/ldz - VnK + [013f]Kj. (17)

This is the effective lateral velocity that advects tracers, whereas VE is the lateral velocity that is
evaluated from the thermal wind equation plus the reference level velocity.

The difference between Lagrangian and Eulerian lateral velocity vectors has not yet been incorporated
into any inverse model of the ocean circulation. Rather, inverse models to date have assumed that the
same lateral velocity vector appears in the tracer conservation equations as in the thermal wind equation.
In fact, we have very little insight from either oceanographic theory or observations about the
magnitude of the bolus transport. The deduction of a Stokes drift of 1.5 mm s-I from the work of
Brown et al (1986) is a rare insight into the importance of this process.

Since the contours of potential vorticity and of other tracers are often nearly parallel (although with the
gradients often pointing in opposite directions), the Stokes drift or bolus transport can be expected to
have a substantial component across the mean epineutral gradients of other tracers (including S and 0),
and its direction will be up the epineutral tracer gradients as often as down them. Because the lateral
velocity vector generally points almost along epineutral isolines of tracers rather than down the
epineutral tracer gradients, the Stokes drift will be much more important for the conservation of tracers
than a simple velocity estimate of say 1.5 mm s- 1 would suggest. For example, a lateral velocity of 1
mm s- 1 down an epineutral potential temperature gradient of 10-6 K m- 1 (one degree of potential
temperature change in 100 of latitude) creates the same amount of water-mass conversion as a dianeutral
velocity of 10- 7 m s-1 acting on a vertical potential temperature gradient of 10-2 K m- 1. Since this
dianeutral velocity is as large as that expected from vertical mixing processes, it is concluded that the
Stokes drift is likely to be important in tracer balances in the ocean.

400

300

200.

1001

2,5 5 7.5 10 12.5 15

Fig. 3. Histogram of the number of occurrences of various magnitudes
of the Stokes velocity (from 0 to 15 mm s- 1) in the map of Figure 2.
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The Levitus (1982) atlas has been used to generate two neutral surfaces throughout the world ocean that
were at depths of 1100 m and 1200 m respectively in the equatorial Pacific. The height, h, between
them was used in Eq. (15) to estimate the Stokes velocity using 1000 m2 s-1 for the lateral diffusivity.
The magnitude of this estimate of the Stokes drift is shown in Figure 2 and the distribution of these
estimates is shown in the histogram of Figure 3 where it is seen that a value of order 1 mm s-I is
typical. It remains to be seen whether the incorporation into inverse models of the difference between
the lateral velocity vectors in the tracer equations and in the thermal wind equation, using the above
parameterization Eq. (15) for the Stokes drift, makes any significant differences.

MIXING PRESCRIPTIONS IN P-SPIRAL INVERSIONS: The Advective Forms of
Conservation Statements in Potential-Density Surfaces

Inversions of the /-spiral type are local in nature, in that a solution is found for the reference-level
lateral velocity components and the mixing coefficients from the information at just one location. The
inversion procedure can be cast in terms of the slopes of the surfaces of the conserved quantity (Schott
and Stommel, 1978) or in terms of the conservation equation of this scalar quantity (e.g. Olbers et al.,
1985). In either case a conservation statement is written in the advective form as opposed to the flux,
or divergence, form. Here the equation for the conservation of potential density is derived and
compared with that used by previous researchers. Important differences are found. Then the
conservation equations of potential temperature and spiciness will be discussed.

The Potential Density "Conservation" Equation

In a potential-density surface the temporal and lateral gradients of salinity and potential temperature are
related by (McDougall, 1987b)

aed, = A ' and &V.O= f VaS, (18)

where it and / are the values of the thermal expansion and saline contraction coefficients evaluated at
the reference pressure of the potential density variable, that is, i = a(S, O, p,.) and = 1(S, O,p,).
The material derivative in the advective form, Eq. (9), of the tracer conservatic, equation can be written
with respect to either neutral surfaces or potential-density surfaces, so that

C'I+ VL.VnC +eC, = Cta+ VL. VC + wdCz = h-'Vn'(hKVnC)+ [DC 2J, (19)

where w is the vertical velocity of fluid through the potential-density surface (henceforth called the
diapycnal velocity). This equation applies for both potential temperature and salinity, and these
equations can be multiplied by & and P3 respectively and then subtracted so as to eliminate the temporal
and isopycnal advective terms, obtaining (after rearrangement) the following equation for the diapycnal
velocity, (since/1S, = 0011,, /3VaS = &VaO, and (Po)-'(Po), = f3S - &0, see McDougall,
1987b),

wd I A, [D .po1
+ D"& 2  (20)

+6(c -1)V, .(hKVnO) + iK{CbV,.V'VnO + TbVnlO.Vnp}.
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This is the full conservation equation for potential density. The first term on the right-hand side is the
only one that would occur if potential density were a conservative variable. If so desired, the left-hand
side can be written with respect to Cartesian coordinates (as in Olbers et al (1985)) as

.o + vL.Vp +IV d dPoj (21)a z - 2 O + W d-1,y =  "z-IX,y"

The usual ayproach with the potential-density equation is to equate the diapycnal advection of potential
density, w (dpo/ldz), to (minus) the diapycnal flux divergence, d[D dp0 / dz. That is, normally
one sees the left-hand side of Eq. (20) being balanced by only the first term on the right. Here we
investigate the magnitudes of the other terms that are usually neglected. The second term on the right of
Eq. (20 arises because while the vertical gradient of potential density is given by
- (Po - (Po) = &0z - fiS , when casting the right-hand side of Eq. (20) in terms of (po) , the extra
term, D(d& /0)0 appears. (The relatively small variation of it with S and the variation of /3 with
both 0 and S have been i nored.) McDougall and You (1990) have shown that this extra term is larger
than the correct term, -DI dOzz - fAzs/ in much of the subtropical thermoclines of each of the world's
ocean basins (see their Figure 9). This is illustrated in Figures 4-6 which show three different
combinations of terms mapped on a neutral surface in each of the three major oceans. On much of the
neutral surface of Figure 4 in the North Atlantic, the correction term in Eq. (20), D--L O2, is larger
than the sum of the first two terms ip Eq. (20), -D[IO 2 z - f#Sz ], (ignoring Dz), implying that the
straightforward term in Eq. (20), D((p-) .dpo/dz" , has the opposite sign to the correct right-hand
side of Eq. (20) in these places. In the Pacific in Figure 5 the nonlinear term is up to 40% of the correct
term, while in the Indian Ocean in Figure 6 it is as large as 30% of the correct term. It is concluded that
serious errors have occurred in the conservation equation of potential density in present inverse models.
From these figures it can be seen that in Hogg's (1987) study of the circulation and mixing in the
central North Atlantic, the second term in Eq. (20), D(d& /90) 2 , which Hogg omitted, was 50% of
the correct term, D/ oz - on the upper of the two al surfaces he considered. In parts of the
North Atlantic, the relative error is more than 100%, and this type of error was built into the Olbers ct al
(1985) model.

In the third term in Eq. (20), the parameter c is defined by c = [II][a/ / and is unity at the
reference pressure, Pr, of the potential density. This third term in the equation scales as K&[c-1]V
and the magnitude of this term can be estimated as follows. Consider the use of potential density
(referenced to the sea surface) down to a depth of 2000 m (as in Olbers et al., 1985). At that depth, c
is about 1.5 and KV20 can be taken to be the same order as eO. where the dianeutral velocity is
lxl0 --7 m s- 1 and the vertical gradient of potential temperature is 3x10- 3 K m- 1. When divided by
the vertical gradient of potential density at 2000 m in the North Atlantic, this third term in Eq. (20)
amounts to a contribution of 0.3x10- 7 m s-1 to the diapycnal velocity. Again, this is not an
insignificant diapycnal velocity, although it is rather unusual these days to find researchers using
potential-density surfaces as far as 2000 m away from their reference pressuze.

The last term in Eq. (20) is due to thermobaricity and cabbeling, (see the corresponding terms in the
dianeutral velocity equation, Eq. (12)). Because the buoyancy frequency is related to the vertical
gradient of potential density by N2 = p (/P ) [-(g/poXdpo/dz)] = u -(g/p0)(dpo/dz)], (see
McDougall, 1987b and Eq. (23) below for a definition of p) the diapycnal velocity induced by
cabbeling and thermobaricity will in fact be larger by the factor u than the dianeutral velocity, e, caused
by these processes. McDougall and You (1990) assumed a lateral diffusivity, K, of 1000 m2 s- 1 and
have shown that in parts of thie North Atlantic and in the Southern Ocean, cabbeling causes a
downward dianeutral velocity as large as -IxlG - 7 m s-i, so that the contribution of the last term in
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Fig. 6. Graphs of varous terms on a neutral surface in the Indian at a depth of approximately 950
m in mid-latitudes. (a) The term plotted here, N 2 N 2 - gN-2 { a022, - P3S.,,}, is approximately
equal to gN 2 

do OZ in the up er 1000 m of the ocean. (b) When multiplied by the vertical
diffusivity, D, this term, gN- {cxO, - /3Sz }, is the rate at which vertical mixing contributes to thle
dianeutral velocity. (c) When multiplied by the vertical diffusivity, D, this term, gN 2 O / 2  is
the rate at which vertical turbulent mixing causes potential temperature to change on a neutra
surface. (From McDougall and You (1990) Figure 6).

367



McDougall

Eq. (20) to the diapycnal velocity will be larger than this in these locations. The neglect of this
cabbeling term in their potential density conservation equation would have caused significant errors (of
order -lxi0- 7 m s- 1 in the diapycnal velocity) in Hogg (1987) and in Olbers et al. (1985). Following
the results of McDougall and You (1990), thermobaricity is as large as (and in the same sense as)
cabbeling in the Southern Ocean and together they cause large negative (downward) dianeutral and
diapycnal velocities. The proper inclusion of these processes in the potential density conservation
equation of Olbers and Wenzel (1989) must be expected to lead to large changes to the implications of
mixing processes in this model.

Notice that only one of the additional terms in the diapycnal velocity equation, Eq. (20), relies on the
difference between the in-situ pressure and the reference pressure; this being the term proportional to
the epineutral flux divergence of potential temperature, h-'V,,. (hKVnO), The other three terms
(cabbeling, thermobaricity and Dj-a 0') contribute to the nonconservation of potential density even if
P = p.r and c = 1. The fact that the "e" equation, Eq. (12), does not contain the epineutral Laplacian of
potential temperature is an attractive feature in comparison with the wd equation, Eq. (20), since the
epineutral Laplacian is relatively noisy to evaluate. This is an added argument in favour of using
neutral surfaces rather than potential-density surfaces.

Where thermobaricity is significant in the ocean, it makes a positive contribution to Eq. (20)
(McDougall and You, 1990), so that three of the four additional terms in Eq. (20) are positive.
Assuming that the term due to the epineutral flux divergence of potential temperature is either positive,
or if it is negative, it is small, then the sum of the four extra terms in Eq. (20) will be positive. The
simplistic conservation equation of potential density which regards potential density as a conservative
variable then results in a diapycnal velocity that is too large (for a given vrlical ai'fusivity, D), by as
much as 100%, or by more than lxl0-7 m s- 1. This error in the diapycnil velocity Ien feeds into the
conservation equations of other tracers like potential temperature and salinity zo 'hat the Interior water-
mass conversion in these models does not occur at a rate proportional to -he cu-vt ture of the vertical S-
Ocurve, but rather is dominated by the diapycnal advection term (if it is positive). If on- assumes that
the inverse model retains the correct diapycnal velocity for dynamica reasons, the use o; tl-e simplistic
equation for the diapycual velocity proves to be equivalent to a corresponding underestimation of the
diapycnal diffusivity, D (for a positive wd). Hence we expect that the o:iss )n o0 ta - rvative
terms in the conservation equation of potential density has resulted in citiler al overe, "e
diapycnal velocity or an underestimate of the vertical diffusivity (for w4 > 6), o-, rt.. qy, a
combination of both.

The Potential Temperature Conservation Equation

The conservation equation of potential temperature with thc total material derivative written with respect
to potential-density surfaces is (from Eq. (19))

Oga+ VL VaO + wdOz - Vn(hKVnO) + [DO2 ]

v (I KVo0) + [DO, (22)

The lateral flux divergence of potential temperature in a neutral surface frirtx work is not the same as
that in a potential density framework, and here we derive the differences.

The lateral gradient of potential temperature in a neutral surface, V,, 0, is related to the lateral g -dient in
the intersecting potential-density surface, V, 0, by the simple expression (McDougall, 1987b)

.. 6
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VUO= ,VnO, where P c[R -1 ][R -c], (23)

c is defined by c = [a/f0][t/fJl and Rp is the density ratio aG, /3S,. The same multiplying factor,

1 , applies to the temporal derivatives of potential temperature in the two reference frames. In order to
find the relationship between the lateral mixing terms in the two different reference frames in Eq. (22),
the following relationship between the lateral differential operators is used (McDougall and Jackett,
1988)

Va Vn + [VR - V (24)

where !kx,y] and Nx,y] are the heights of ararticular potential-density surface and the intersecting
neutral surface respectively, so that VR= R,,R] and VN= [Nx,Ny]. Applying the differential
operator, Eq. (24), to V.O (= pVO) we find that

V2 = UV2o + Vn . V,o + [vR - VN] (VO)2 , (25)

and the potential temperature conservation equation can be rewritten in the form

o,1+VL VO+Wdo= J V,.(haKVoo) + [DOe,

-[p - 1] - Vn' (hKVnO) - KVnp" VnO (26)

K K([192_ -]O-' VnO'VnO) + uVO-(VJ-VCK),

where the following geometrical relationships between the slopes of potential-density surfaces and
neutral surfaces have been used (McDougall, 1988),

[VaR- VN] = [U -1]VelO0 , (27)

[VR- VnN], = "Vha -Vh. (28)

The usual conservation equation of potential tcmperature in a potential density framework involves just
the terms on the first line of Eq. (26). The additional terms on the second and third lines arise because
of the different lateral gradients of potential temperature in the two coordinate frames and because of the
different slopes of potential-density surfaces and neutral surfaces. As an example of the importance of
the first term on the second line, consider the use of potential-density surfaces down to a depth of 2000
m in the North Atlantic, as in the inversion of Olbers et al (1985). At 1500 m in the North Atlantic, p
is geicerally greater than 1.5 so this term, - [p - 1] 1 V . (hKVnO), represents a correction of 50% of
the correct lateral mixing term that appears on the right of this equation (see Eq. (22)). In addition, the
next term, - KVjt .VfO, is of similar magnitude at this depth in frontal regions of the North Atlantic.

The third line of Eq. (26) contains the term - Ku,[2p - 1]0 t VO. VnO, which does not go to zero as
p ,ends to 1; that is, as the in-situ pressure tends to the reference pressure. Neither does the
- K-',,j . V,,O tein go to zero as p tends to Pr. These terms arise because while the two types of
surface are tangent where p is 1, they do not have the same curvature in space. Even though Hogg's
(1987) study used cl surfaces rather than co surfaces so that p was close to unity, the
- Kyt [2p - 1] 0, VO . VnO term is estimated to contribute 10- 9 K s- 1 to the rate of change of
potential temperature in the southern part of his viestern box; a magnitude that is as large as that of any
of his mixing or advection terms. In the Antarctic Circ impolar Current - KV,,u4 V,,O is as large as
any other term in (26) even if pr = p, due to the pressure dependence of c through the term
- -TbV n Vp.

dc. . , .. . . . . ...
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When the diapycnal velocity is estimated using just the first line of Eq. (20), the constraint that the
potential temperature conservation equation places on the temporal and epipycnal changes of 0,
O + a + Vt, 6, is not due to the (correct) mixing terms that would result from inserting the full

expression Eq. (20) for wd into the correct conservation equation for 0, (the top line of Eq. (22) or all
of Eq. (26)), but has additional terms due to the errors made in estimating the diapycnal velocity.
Using Eq. (20) and Eq. (26), it can be shown that

o,r+VLv. = -L V (hFKVo) + [Do,1, - OJ&e- f.Ss7FiFD(&O, -fS,)]
(29)

-KV,,ji V~O - K (19 ] ,I " V 0 )' + 'UV6 .-(VK - VCFK)

+ uKgN- 20,{CbVO.VO + Tb Vop0Vl}.

The top line of the right-hand side of this equation represents the way in which the mixing Processes
parameterized by D and K affect the temporal and epipycnal changes of potential temperature in such a
truncated model, while the additional terms are corrections that result partially from the fact that 0 has
been mixed along potential-density surfaces rather than along neutral surfaces (the many error teims in
Eq. (26)) and partially due to the inajcurate estimation of the diapycnal velocity from just the first term
in Eq. (20), that is, as [O Z - fiS2J [D(&Oz - fiSz)] rather than using the full Eq. (20). Note that the
divergence of the epineutral flux %,, potential temperature terms that appear in both Eq. (20) and Eq.
(26) have cancelled and do not appear in Eq. (29). The i- ygN- Djo 0 term in Eq. (29) is
important in the upper ocean, while thermobaricity and cabbeling tend to be larger at thermoclinic fronts
deeper in the water column, and the other terms involving the lateral diffusivity, K, have been
illustrated following Eq. (26). The discussion following Eq. (13) above indicates how serious the
omission of thermobaricity and cabbeling is in the water-mass conversion equation, Eq. (11) or Eq.
(29), at a thermoclinic front such as the Antarctic Circumpolar Current (cf Olbers and Wenzel, 1989).

This section has shown that even though potential temperature, 0, is a conservative variable, the use of
a potential density rather than a neutral surface reference frame for the lateral mixing process results in
many additional terms in the conservation equation (see Eq. (26)). None of these terms have
previously been included in inverse models. Two of these terms, - KV,,i . V,,9, and
- K,i [2t - 1] 0 V,,0. VnO remain even when the reference pressure of the potential density is equal
to the in-situ pressure. We have also seen how a mistaken estimate of the diapycnal velocity feeds
through into the tracer conservation statements so that these equations represent an incorrect balance
between epipycnal advection (LHS) and mixing (RHS). This leads to an error in the estimated lateral
flow field. A similar misestimate of the lateral velocity field occurs in the linear vorticity equation
through the vortex stretching term, part of which is due to the difference of the diapycnal velocity
throagh neighboring potential-density surfaces.

The o- "Conservation" Equation as a Linear Combination of the 0 and S Equations

Rather than carrying a conservation equation for potential density in an inverse model, one can instead
carry conservation equations for both potential temperature, 0, and salinity , S. The linear combination
of these equations using the multiplying coefficients, & and fi is the potential density equation. It
would actually be desirable to replace either the 0 or the S equation with this linear combination of the S
and 0 equations because it is independent of any errors in Lhe lateral velocity vector and so yields a
more direct link (better signal to noise) between the mixing processes and the consequent diapycnal
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advection (see the discussion around Eq. (41) below). Another real advantage of approaching the
potential density equation by using the 0 and S equations is that one does not leave out the nonlinear
term due to vertical mixing, D-70 2 that is commonly omitted from Eq. (20). Also, the nonlinear
terms due to lateral mixing are smaller (at least when at the reference pressure). To see this we need to
first derive the conservation equation for sali,:ity that is analogous to Eq. (26) for potential temperature.
This is done by applying the differential operator, Eq. (24), to VaS = , S, obtaining

S:Ia+VL.VaS+wdSz = - V '(haKV S) + [DS,]z

- C i V(hKVs - ClT) (30)

-K}A,'v -  .VnO) + iEVS.(VK-V K).

Multiplying this equation by 1 and subtracting & times Eq (26) we find

Pd _'L =P AV, -~i (haKcP' - V, (haKV,0 ) + I3[DSz]1, - '[DO, ]z
+ d(c- )iV.(hKVO) + &aKV Vc.vO (3)

Fe 14p2 -pJv.v.Odi 2 [L- IIK{CbVn9.-Vn6 + TbVflO -Vflp}.

The terms in the second and third lines of this equation are due to having assumed that the lateral
diffusior occurs along potential-density surfaces rather than along neutral surfaces. In contrast to the
no equation, Eq. (20), there are no correction terms in Eq. (31) due to vertical mixing. If the reference

ssure is equal to the in-situ pressure, the only error term in Eq. (31) comes from the & --KV,c • V,0
term and is KTbVnlO. Vnp, that is, thermobaricity, whereas in Eq. (20) there is also the cabbeling term,
KCbVnO " VnO, in this situation. Of course, if the lateral mixing had been parameterized as being
epineutral there would be no correction terms in Eq. (31). It is concluded that carrying both the 0 and
S conservation statements, even in their truncated forms (i.e. the top lines of Eq. (24) and Eq. (30)), is
more desirable than using the top line of the conservation equation for potential density, Eq. (20). As
noted above, signal-to-noise considerations mear that it is preferable to carry either the S or the 0
equations, and the linear combination / times Eq. (30) minus t times Eq. (26).

The Spiciness "Conservation" Eauation

Olbers et al., (1985) and Olbers and Wenzel (1989) chose to use Veronicity, rV, instead of salinity or
potential temperature in the, beta-spiral ipversions of the North Atlantic and Southern Ocean. Here it is
shown that just as potential density is not a conservative variable, neither is Veronicity, and the' non-
conservative nature of Veihinicity has introduced significant errors in these inversions. The non-
conservative nature of Veronicity can be noted from the fact that contours of constant TV are not straight
lines o! .he S-0 diagram (see Figure 7) so that mixing between two water parcels that have the same
Ve, on y will produce a parcel with a different value of Veronicity. The curvature of the 'rV isolines
on this ciagram is similar to that of the ae isolines, so nonlinear effects of a similar magnitude may be
expected. For a given (and arbi, ary) value of the relative scaling of the two axes, Veronicity has the
property that its isolines are orthogonal to lines of constant potential density on the S-0 diagram.
Jackett and McDougall (1985) have proposed a different definition of orthogonality that does not
depend ,n the scaling of the axes of the S-0 diagram, and here a conservation equation is developed for
their variable, spiciness, T.
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Fig. 7. Contour plots of, (a) Veronicity. 'rrV and (b), spiciness, Tr, on the S-O diagram. The other lines

shown are of potential density referenced to the sea-surface.

To a good approximation, variations of spiciness are related to those of potential ter1 ~rature and

salinity by dr=~d d.(2

For this total differential to define a path-independent function, "t' one needs dfi/d0 = d&/dS which is

not true of the real equation of state of seawater. One can imagine an equation of state that did satisfy

this constraint (by for example, having d2p/dOS = 0), and then a linear combination of the

conservation statements of potential temperature and salinity can be taken to arrive at the following

conservatic" 'ation for 'r

,+ vL VZr+w = ;L+V'L 'Vr+ wd = h' .(hKVz) + [ODzlI
-Kvo V (33)

23fl d
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Just as in Eq. (20) above where the nonlinear mixing terms in the potential density conservation
equation were found to be large in the thermoclines of many ocean basins, so too in these regions will
the above terms, - D 6,02 and - K- L VnO. V,,O be important in Eq. (33).

In practice, the lateral mixing of Tin previous inverse models has been along potential-density surfaces,
rather than along neutral surfaces, and the differences can be found by applying the differential
operator, Eq. (24) to VTr (=2&VO) so that Eq. (33) can be written as

r' I+ VLVaT + Wd T, -L V, V (hoKV T) + [DTI

- t[2(.L- l)-(c-1)] V V.(hKVnO) - 2MKV,,4 VnO (34)

- 2&K (1. - ]0' V,VO) Z+ 2&uV,,O .(VK-VK)

2u 2 daKV . + KCVoVo + KV.Vp}.

The mixing terms that were included by Olbers et al (1985) and Olbers and Wenzel (1989) were the
first two, on the top line of this equation; all the other terms are due to the nonconservative nature of
both potential density and spiciness. There are now five terms that do not disappear when Pr is equal to
p (i.e. when c=p= 1). These are - 2 nKV y. Vn0, - 2&Ku,[2p - 1] 0," VnO . VnO, and the three
terms on the last line of the equation. Since Cb -- , cabbeling will effectively appear as
-[2/2- 1]K Co VO VnO. All of these terms have been discussed above and they were found to each
be large in different parts of the ocean, notably at thermoclinic fronts where either V,, 0. Vn 0 or
VnO.Vnp is large.

Since the diapycnal velocity is commonly estimated with a truncated conservation equation, the
effective constraint that the spiciness conservation equation would maintain between the epipycnal
advection oft and the mixing processes is illustrated better by the following 'conservation equation,

a + VL VT= -h+ a -(h'KVcT) + T r , [ - 4S'[D(eO, -3S,)]2

+ -"u D d6 - 2 &KV,.j "VO
(35)

u] [v, K{4VoO+V . 0 + r(VnK V}K)

-22 KV O'VnO + 214 AKWC) ,V9*V9 + TbVnO-Vflpl

Again, only the top line was included in the previous inversions. Notice that the h-'V,,- (hKVnO)
term has again cancelled from this equation. The nonlinear mixing term due to vertical diffusio!. has
changed si. between Eq. (3 4) and Eq. (35) and has increased in magnitude by the factor
2p(Rp -1) =2c(R, - c) At 1500 m in the North Atlantic this factor is .bout 3. Similarly,
cabeling and thermobaricity has a different multiplying factor, 2R,(Rp - c)-, and this is about 5 in
the North Atlantic at 1500 m. These multiplying factors increase the magnitude of these nonlinear
terms which were already as large as the physically correct terms in the conservation statements that
have been considered above. It is the compounding of the errors from the potential density
conservation statement, and the assumption that spiciness is a conservative variable that has led to
these large multiplying factors.
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The simple lesson for us to learn here is that just as potential density is not a conserva). v; ,hie,
neither is Veronicity, TV, or spiciness, -r, and so conservation statements for these variables must take
this into account. What many will find surprising is the magnitude of the many nonconservative terms
in relation to the traditional terms in the conservation statements, and also the fact that the difference
between epipycnal and epineutral mixing remains even when the potential density's reference pressure
is equal to the in-situ pressure.

MIXING PRESCRIPTIONS IN BOX MODEL INVERSIONS: The Divergence Forms
of Conservation Statements in Potential-Density Surfaces

The Nonconservative Production Terms in the Divergence Forms of the Conservation EqNuations

As far as the conservation equations are concerned, the distinguishing feature between 3-spiral
inversion methods and box-inverse methods is that the /3-spiral methods use advective conservation
statements while box-model methods use divergence (or flux) conservation statements. In addition, the
P-spiral method is often used with data that have been laterally smoothed in some way, whereas the box
models are generally used with unsmoothed data. The 3-spiral method examines the balance of terms
at a point while the box-inverse method is concerned with the balance of fluxes through the six faces of
a box. The streamfunetion nethod is a sub-set of the box-model approach that expresses the Eulerian
lateral velocity vector in terms of a geostrophic streamfunction. Note that the Lagrangian lateral
velocity vector does not satisfy the required relationship to be expressible as the derivative of a
streamfunction. However, since inverse methods have not yet addressed this question of the difference
between the Lagrangian and Eulerian mean flows, this aspect has not yet been an issue. Some models
can be a little hard to classify as a box inversion or as a /-spiral inversion. For example, Hogg (1987)
used a divergence form for the lateral gradient operator (using a streamfunction) but evaluated the
vertical derivatives on a potential-density surface rather than between a pair of surfaces. In this way his
model is like a /-spiral method in the vertical while being like a box model in the lateral directions.

In neutral surface coordinates, the divergence form of the general conservation statement for a
conservative tracer, C, is given by Eq. (7), and when integrated over the sides of a box of volume V
and lateral area A, is

VL [LNhULC]E + [LiwhVLC]N + [AeC]u = [LNshKCX]w +[LLwhKCy ]N +[ADC] t , (36)

where LEw and LNS are the horizontal length scales of a face of the box in the east-west and north-
south directions respectively, and the lateral derivatives of C are evaluated in neutral surfaces. Here uL
and vL are the x ana y components of the Lagrangian-mean velocity vector

To date, box models have used potential-density surfaces as their upper and lower boundaries rather
than neutral surfaces, and here Ae examine the errors so introduced in the lateral transport of
properties. To do so, divergence forms of conservation statements are needed in the potential-density
surface coordinate frame. These are obtained by noting that the continuity equation can be \A ritten with
respect to potential-density surfaces as (cf Eq. (8)),

dha + V,.(haVL) + =0, (37)--i ell" (7
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ana taking C times this equation plus ha times the advcctive form of the C conservation equation, (Eq.
(9) with the advection terms on the left-hand side written with respect to potcntial-density surfaces),
one finds

d(huC)I"+V.hVC WCcu ,(aVC D,0
+~a awC: =+[~ (38)

ha{*Vn,.(hKVnC) - -V,(haKVC)} .

The extra terms due to the different coordinate frames appear in the second line of this equation and
exactly correspond to the extra terms in the advective forms of the equation, for example, in Eq. (22)
and Eq. (26) in the case of potential temperature, and in Eq. (30) for salinity. The extra terms in the
conservation equations for potential density (Eqs. 20 or 31) and spiciness (Eq. 34) due to the non-
conservative nature of these variables also carry directly across to the divergence forms. We conclude
that all the extra terms due to the non conservative nature of potential density and spiciness that have
been found in the previous section of this paper for the advective forms apply equally to the divergence
forms of these conservation equations. For this reason we do not need to repeat the error analysis for
these extra terms. Suffice it to say that these terms that have been missing from previous inverse
studies are often as large as the straightforward mixing terms in various parts of the model domains.

The Impact of Uncertainty in the Continuity Equation on the Tracer Equations

The single most important aspect of many past box-inverse models that has precluded them from being
influenced by and detecting oceanic mixing processes is the overwhelming effect of errors in the
continuity equation (the incompressibility equation) on the tracer conservation equations. In order to
demonstrate this, the left-hand side of Eq. (38) is rewritten as the linear combination of Eq. (9) and Eq.
(37) as

cd" + V.(hVL) + [WdG}

+ ha{Cto + VL.V C + Wdt} = "ho V,.(hKV,,C) + [DC2]'.

The physical constraint that we wish to glean from this equation is the connection between the mixing
of tracer C (the right-hand side) and the Lagrangian advection of C (the second curly bracket on the
left). The first curly bracket is included so as to be able to write the left-hand side of Eq. (38) in a
divergence form. When integrated over the sides of a box of a typical oceanic box model, the
uncertainty in the continuity equation (first bracket in Eq. (39)) is typically 1 Sv (106 m3 s- 1) and this is
so large as to swamp any signal that represents the physically interesting "advective-diffusive" balance
of C-stuff. As an example, consider the conservation of salinity in box 11 of Wunsch and Minster
(1982). From their Figures Ic and 3a the epipycnal and vertical advection of salt amount to only 1% of
the mean salinity (35 psu) times the volume flux imbalance into the box. That is, the solution has the
left-hand sides of our Eq. (38) and Eq. (39) being dominated, by a factor of a hundred, by the error in
the continuity equation. The consequence of this is that the signature of mixing processes and the
balancing advection of C are simply small terms in the equation so that even when the mixing and
advection are modelled correctly, the variance of the salt equation can only decrease by two percent.
Effectively, the salt conservation equation becomes simply another continuity equation and
consequently (i) the rank of the system of equations suffers because of the nearly collinear nature of the
equations, (ii) the information that is contained in the salinity contours in three-dimensional space is not



McDougall

imposed as a constraint on the solution, and (iii) no information on the mixing processes can be
obtained from the inversion.

The same comments apply to many other box-inverse papers including Wunsch (1984), Joyce Wunsch
and Pierce (1986), and Wunsch, Hu and Grant (1983). In all of these papers, the balancing advective-
diffusive terms in the salinity conservation equations were typically 1% of the residual error left in the
salt conservation equation by the fact that the continuity equation was not satisfied identically. Similar
comments apply to other conservation statements (e.g. potential temperature, dissolved oxygen or
silicate) but the situation is worst for salinity simply because its mean value is quite large in relation to
its variations in the ocean.

The Wunsch and Minster (1982) paper i especially interesting in this regard because it carried both
epipycnal and diapycnal diffusivities, and surprisingly, the lateral diffusivities of the model were of'
order 1-10 m2 s-1, or a factor of between a hundred and a thousand less than what we believe for the
ocean. One would think that any inconsistencies in a model's data or its equations would cause the
magnitude of its parameters to increase so as to soak up some of the noise. Why then were the lateral
diffusivities close to zero? I believe the answer is again related to the volume flux imbalances in the
continuity equation. When using all the eigenvcctors, in addition to satisfying the equations identically,
the SVD solution procedure also minimizes the norm of the solution vector. When some of the
eigenvectors are discarded (the ones with the smallest eigenvalues) the solution norm becomes even
smaller and the equations are no longer satisfied exactly. The method then represents a tension between
satisfying the equations while also having a small solution vector. This competition between
minimizing the equation errors and the solution norm is more mathematically obvious in the ridge
regression or tapered least squares procedure. Because the error in the salinity conservation statement
is dominated by the error in the continuity equation for each box, a respectable value of the lateral
diffu,.ivity (of order 1000 m2 s- 1) would only reduce the error variance in the salinity equation by 2%
so the solution procedure chooses instead to have a small solution vector, and in particular, to have
small lateral diffusivities. In this situation, the solution will be sensitive to the column weighting, and
presumably a different choice of column weights could also have yielded very small vertical
diffusivities as well. This explanation of the unrealistically small values of the lateral diffusivity found
by Wunsch and Minster (1982) is due to the combination of (i) the signature of mixing and advection of
salinity being well below the allowable error in the salinity conservation equation, combined with (ii), a
solution procedure that prefers small values of the diffusivities.

The inverse model of Wunsch, Hu and Grant (1983) is, I believe, another example of a study that has
been unwittingly plagued by the salt equation being effectively another continuity equation. The paper
concludes that there is no need for vertical mixing in their model, even though the downward diapycnal
velocities were of order 10-7 m s-1 (see their Figure 1 Ia). The necessity for diapycnal advection but
not for vertical diffusion was argued because the imbalances in the tracer conservation equations
(notably salinity) were almost completely explained (a posteriori) by interfacial advection with little
apparent need for vertical diffusion. However 99% of the interfacial advection that was added into the
salt conservation equation went into correcting the first curly bracket in Fq. (39) by adding the vertical
part of the volume flux divergence, leaving a comparatively small salt residual (called E2 by the authors)
that resembles the physically interesting Lagrangian advection of salinity. From Figure 5b, one finds a
value of gN-2 {aO, - P3S, } of about - x 10-3 m-1 in the region of the South Pacific between the two
Scorpio sections at a depth of about 1000 m. At this depth Wunsch et al (1983) find a (downward)
diapycnal velocity of about -0.7x 10-7 m2 s-1, which is consistent with a vertical diffusivity of
0.7x 10' 4 m2 s-1 acting on the above value of gN 2 {aO - PS, }. However, deeper in the water
column at 1400 m in this region, McDougall and You's (1990) figure 5 shows that gN'{aZZ - flSZ}
is positive so that a positive vertical diffusivity vould not be consistent with the do, vnward diapycnal
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velocity found by Wunsch et al (1983) at this depth. Since the salinity equations in Wunsch et al
(1983) were functionally linearly dependent with the continuity equations, the reference level velocity
vectors that came out of the inversion were effectively not influenced by the advective-diffusive salt
balances. Only by allowing this advection of salinity to emerge as signal in a conservation equation,
rather than being hidden in the last few percent of an equation's noise, and at the same time balancing
this advection of salt with a parameterized mixing term, will we be able to say whether mixing
processes are required by the data.

Is there a procedure by which mixing processes can be made to stand out above the noise in tracer
equations in box inverse models? The answer is yes, and the key is to minimize the influence of the
first curly bracket in Eq. (39) by writing a conservation equation, not for the tracer itself, but for the
tracer anomaly, C', from some fixed value, C. The reason why this procedure works is that the
advective form of the conservation statement applies equally well to C' as to C, since it involves only
various derivatives of the tracer. Hence in forming Eq. (38) and Eq. (39) we can multiply Eq. (37) by
the primed tracer variable instead of by C, and Eq. (38) and Eq. (39) become exactly the same
equations with C replaced by C'. This procedure has in fact been used to good effect by several
researchers, including Hogg (1987), and Lee and Veronis (1991). This procedure is easiest to justify if
the same mean tracer value is subtracted from every box, but in the last subsection of this paper it is
argued that it may be beneficial to subtract a different mean tracer value for each box.

Memery and Wunsch (1990) were able to balance the volume fluxes into and out of their boxes to
within about 0.02 Sv without having an excessively large solution norm. This was most likely due to
the fact that they used the Levitus (1982) data set that is that is temporally and horizontally averaged and
so does not contain the complicating features such as internal waves and mesoscale eddies that are
found in real cruise data. Presumably the salinity conservation equations were not unduly correlated
with the continuity equations in the Memery and Wunsch (1990) study, and that if vertical diffusivities
were added to the model, the inversion would have found them to be necessary. Conservation
equations for potential temperature should also be added to the system in order to provide added
information on the mixing processes (see the section below). Schlitzer (1987, 1988) also used the
Levitus data set and was able to specify the volume flux imbalances to as iittle as 0.001 Sv, and he
resolved both diapycnal advection and diapycnal diffusivities. This lends support to the present claim
that the errors in the continuity equation are what have been precluding most box-inverse models from
resolving mixing processes.

Many box-inverse models of the Atlantic and Indian Oceans (e.g. Wunsch and Grant (1982), Rintoul
and Wunsch (1991) and Fu (1986)), have found that salinity conservation did not add any information
to their inversions. Since these oceans contain substantial variations of salinity along neutral surfaces,
some of which information has previously been used to determine flow directions of water types by the
Wfistian tongue method, it would be quite incredible if the salinity field contained no information on
mixing and advection: the challenge is to extract this information.

The Need for Vertical Diffusion as well as Interfacial Advection

It has been quite common in box inversions to include a diapycnal flux of volume but not to have any
diffusive flux of tracers such as potential temperature or salinity. Since diapycnal advection occurs
only in response to mixing processes (see Eq. (20)), it is clearly dangerous to include one part of the
effect of mixing processes (the advection of tracer) without at the same time carrying the other part (the
diffusion of tracer). For example, in the solutions for the North Atlantic circulation presented by
Wunsch and Grant (1982) and by Wunsch (1984), many of the isopycnal interfaces had diapycnal
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velocities of more than 10xl0 -7 m s- 1 passing through them. That is, the diapycnal velocity was more
than ten times the canonical value of the upwelling velocity in the deep ocean. On the face of it, this
implies that the vertical diffusivity must be about ten times its canonical value, or about 1OxlO -4 m2 s-1

in order to fuel this seemingly large (but probably not impossibly large) diapycnal flow. Wunsch
(1984) has obviously wrestled with this aspect of his model, as the discussion around his equation (18)
shows (and the corresponding discussion in Wunsch, Hu and Grant (1983)). There it was proposed to
regard the model's interfacial velocity as a combination of a true interfacial velocity and a diffusive flux
of density. But a scale analysis shows that the eddy diffusion of density is a very small fraction (less
than 0.3%) of the advection of density (i.e. Ddpo/dz <<p owd). We are obviously never going to be
able to account for terms in conservation equations to this accuracy.

Many of the box-inversion papers write conservation equations for "density" or "mass", however, in
the divergence form, a conservation equation for "density" is almost the same as a conservation
statement for volume transport. This is apparent from a scale analysis of the two curly brackets on the
left of Eq. (39), using the in-situ density (or indeed any other kind of density) for C. Since the
imbalance in the volume transport in and out of a box is allowed to be say 0.3 Sv, the second curly
bracket in Eq. (39) (the advection of density) amounts to only 0.3% of the first bracket, hence the
"density" conservation equation is equivalent to the incompressibility condition. There is an extra
pedantic twist to this issue in that McDougall and Garrett (1991) have shown that while the divergence
of the instantaneous velocity vector, V. u, is directly related to the instantaneous Lagrangian change of
density, the divergence of the mean velocity vector, V- U, is unaffected by the divergence of the
turbulent fluxes of heat and salt (even though the molecular flux divergences of heat and salt do
contribute to V. U!). In this way, V U = 0 is actually a better embodiment of the continuity equation
in a turbulent ocean than is V. (5 U) = 0, although, as we have just shown, the differences are of order
0.3% and so are quite negligible.

The separate roles of dianeutral advection and dianeutral mixing in causing water-mass conversion have
been illustrated by maps of the relevant vertical derivatives of hydrographic variables on some neutral
surfaces from each of the world's oceans in McDougall and You (1990). Maps of the dianeutral
advection caused by small-scale mixing, gN-2 aOzz - f3Sz, , and the rate at which vertical mixing
changes the potential temperature on a neutral surface, gN- 0 dLS, (both terms are normalized by the
vertical diffusivity, D), are plotted in Figures 4-6. These maps show well-defined patterns in the
magnitude and sign of these terms and there are many regions where the terms have the same sign. In
these locations the rate of water-mass conversion achieved by vertical mixing is of opposite sign to that
caused by the dianeutral advection alone. An inverse model that carries only vertical advection in the
salinity or potential temperature conservation equation will tend to force the dianeutral advection to be
the opposite sign to reality. This is explained in more detail by McDougall and You (1990) and will not
be repeated here.

I wish to emphasize that there is no problem at all witi the neglect ofeddy diffusion terms from the
continuity equation (called by Wunsch the "mass" or the "density" conservation equation), rather it is
the omission of vertical diffusive terms from the tracer conservation equations that causes concern. In
particular, if an inverse model carries just thermal wind equations and continuity equations, without
considering any tracer conservation equations, then there can be no argument with the interpretation of
the diapycnal velocities that one obtains from the model. One realizes that there must be some vertical
mixing going on to cause this diapycnal flow, but since the diapycnal diffusivity does not appear in the
two types of equations in one's model (thermal wind and incompressibility) the model is quite
consistent without having to include the diapycnal diffusion. The problems referred to in the previous
paragraph and described more fully in McDcugall and You (1990) arise when a tracer or several tracers
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are carried by the model. Then one has no choice but to include both interfacial diffusion and advection
in order to construct a physically consistent model.

When is it Redundant to Carry both S and 0 Conservation Equations?

One has a tendency to think that since the epineutral (and epipycnal) gradients of salinity and potential
temperature are related, the conservation equations of S and 0 must be linearly dependent. This is not
the case, as can be readily appreciated by inspecting the form of Eq. (9). While the temporal and
epineutral derivatives of S and 0 are proportional (through the ratio aJfl) the dianeutral advection terms
are in the different ratio Sz/Oz and the dianeutral diffusion terms are related by a third different ratio. It
is only when the dianeutral advection is eliminated from the S and 0 conservation statements to arrive at
the form Eq. (11) that the S and 0 equations are redundant. Another way in which a real redundancy
can arise is if some kind of density conservation equation is used together with both the 0 and S
equations in the form of Eq. (9). Since density conservation equations (such as the "e" equation, Eq.
(12)), are simply a linear combination of the S and 0 equations, it is obvious how the linear dependance
arises when all three equations are carried.

Wunsch and Minster (1982) carried a continuity equation and both S and 0 equations and found that all
three types of equations were effectively linearly dependent. As explained above, such linear
dependence should not have been expected since their model carried both diapycnal advection and
diapycnal diffusion. The reason for the near collinearly in their case would have been the dominance of
both the S and 0 equations by the same imbalances in the continuity equation:- both the S and 0
equations were essentially repeated continuity equations with the mixing information buried in the
noise. I believe that the simple procedure of subtracting a suitable mean salinity and a suitable mean
potential temperature of each box before writing down the divergence forms of the conservation
statements would have yielded very different results in their study: the rank of the model would have
risen substantially, the lateral diffusivities would have been much larger, and quite possibly, the vertical
difftisivities and diapycnal advection would have been better-determined.

Why use a neutral surface coordinate scheme rather than Cartesian coordinates?

The issue of the surfaces in which one assumes the lateral mixing to occur has been addressed earlier in
this paper, and will not be repeated here. Rather, here some observations are offered on the advantages
of casting the left-hand sides of the conservation statements in the neutral surface framework. These
remarks will apply equally well to the advective and the divergence forms of the conservation
statements and so apply to both the /3-spiral and box inversions. Consider the steady-state conservation
statement for say potential temperature, 0, in a region where the epineutral gradient of potential
temperature is small in relation to the horizontal gradient, V20 = Oi + Oyj, and where the neutral
surface slopes significantly. The three-dimensional advection of 0 is the same in both coordinate
frames so that (from Eq. (9))

{ vL.[V2C - VnC]+ [w-e]C, }+ VLt.VnC +eC = h-Iv' (hKVnC) + [DC,]. (40)

The terms in the curly brackets here sum to zero exactly, but if the neutral surface is significantly
sloped, this cancellation can, and often does, represent the difference between two large numbers. In
this situation, any uncertainty in the lateral velocity components will cause an unnecessarily large
uncertainty in the left-hand side of this equation and so potentially upset the desired balance between
advection (LHS) and diffusion (RHS) in Eq. (40). When the equations we v, eighted by their row-
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norms, the equation error that is allowed in the inversion procedure will be unnecessarily large in the
Cartesian formulation.

This is especially obvious in the linear combination of the S and 0 conservation equations that is the 'e'
equation, Eq. (12) (in loose terminology, this is the advective form of the 'density' conservation
equation). In neutral surface coordinates, this represents a very direct relationship between the
dianeutral advection, e, and mixing processes. Since the lateral velocity vector does not appear in this
equation in the neutral surface framework, the inherent uncertainty in the inversion's lateral velocity
vector can neither upset this balance nor can it contribute to the expected error of the equation. In this
way the 'density' or 'e' equation is almost guaranteed to contain separate information to the other
conservation statements that contain the lateral velocity vector. However, in the Cartesian framework
this same equation does contain large balancing terms that do involve the lateral velocity vector, as in
the curly bracket below,

vL.[aV2  0 -1OV As + [w -e](a O - S J) + e(a O -3S J) =

[D(aO,-jS)], - K{CbVlO.VlO + TbV,,O.Vnpl.

The terms in the curly brackets on the left of this equation sum to exactly zero. The individual terms in
this bracket are frequently much larger than the other term on the left, namely, e(aO, - 1S), as the
magnitude of [w - e] is frequently much larger than that of e. The same point can be made regarding
the equation for the diapycnal velocity, w4, in the potential density framework compared with the
Cartesian framework in that Eq. (20) does not involve the lateral velocity components whereas in the
I artesian form Eq. (21,t qoes contain the do-nothing combination of terms,
Vl. V2po + [w - w Another appealing feature of thee equation in the neutral surface
amework is that it does not contain the lateral Laplacian of any property. Since the lateral Laplacian is

a relatively noisy quantity to estimate from data, this feature of the e equation, Eq. (12), augments the
absence of the lateral velocity vector to suggest that the equation is a relatively noise-free connection
between dianeutral advection and (mainly vertical) diffusion.

The above discussion of the merits of performing inversions in neutral surface coordinates has been
focused on the implications for determining the strength of mixing processes. But even in models
without mixing the different slopes of various surfaces affects the reference level velocities and other
outputs. For example, Schott and Zantopp (1979) showed that the 13-spiral technique gave reference
level velocities at 1000 m that differed by 5 mm s- 1 depending on whether potential density or steric
anomaly (specific volume anomaly) was conserved by the inversion. In a box model inversion of
sections in the North Atlantic, Rintoul and Wunsch (1991) have compared their model which used
interfaces that were a close approximation to neutral surfaces with a previous model that used
surfaces that were a coarser approximation to neutral surfaces. They found that the differences
between the surfaces caused the poleward flow of intermediate water to decrease by 2.4 Sv and the
equatorward flow of deep water to be reduced by the same amount. The poleward heat flux changed
by 0.1xl0 15 W.

Some recommendations for box inversions

The above issues for box inversions are all intimately linked because (i) the tracer (especially salinity)
conservation statem-nts have been dominated by noise from the "mass" conservation equation (reall)
the incompressibility equation), (ii) diapycnal diffusion coefficients have not bcen resolvable from the
models and hence (iii) it has been pointless to add a conservation equation for potential temperature
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since this would also have been linearly dependent with the existing two sets of equations. It is to be
hoped that the above recommendation of forming divergence conservation statements for (a) volume
and (b) for the deviations of tracer concentrations from suitable average values, will cure all three
problems simultaneously. This simple procedure should make the tracer conservation statements
become linearly independent of the continuity equations, giving the advective-diffusive balance of say
salinity a chance of constraining both diffusivity coefficients and the mean velocity field. This will also
result in an increase in the rank of the system of equations. Conservation equations of potential
temperature and of other tracers should also be included in the inversions so as to extract the further
independent information on mixing processes that these equations contain.

The interfaces that separate the boxes should be neutral surfaces in order to avoid the many error terms
in Eq. (26) and Eq. (30) that arise due to mixing laterally along potential-density surfaces rather than
along neutral surfaces. The previous subsection also shows that the neutral surface framework should
be superior from the signal-to-noise viewpoint. In particular, the direct relationship between diancutral
advection and mixing processes can be obtained by taking the linear combination of a times Eq. (36)
with the anomaly of potential temperature as the tracer, minus 3 times Eq. (36) with the salinity
anomaly as the tracer.

Previous box inverse models have carried continuity equations for each box (despite the different labels
of these equations as "density" or "mass" conservation statements), whereas #-spiral methods do not
enforce the continuity equation. Perhaps this is the key difference between the two methods. Box
models should continue to carry the volume conservation equations for each box (in the form of Eq.
(36) with C = 1), and it may be necessary to recognize that the Lagrangian velocity components that
appear in this equation contain the Stokes drift (Eq. (15)) in addition to the Eulerian-mean velocity that
is obtained from thermal wind.

On the choice of mean tracer value for each box

Consider forming the salinity anomaly for each box by subtracting a mean salinity (say 35 psu) from all
the salinities in all the boxes of a box model. The maximum value of S' for any particular box may be
say 1 psu so that the uncertainty in the salinity conservation equation due to the continuity imbalance is
improved by a factor of 35. However, this may not be enough of an improvement to guarantee that the
salinity conservation statement enforces an advective-diffusive salinity balance. In the examples quoted
above, the advective-diffusive salt balance would improve from being 1% of the residual equation error
to being 35%. If this proved to be not enough of an improvement, then one would need to use tracer
anomaly values that were referenced to a mean tracer value that is closer to the average tracer value of
each box. In order to extract the advective-diffusive tracer balance from the divergence form of the
conservation equations, the most appropriate mean value of the tracer, C, to subtract from C to form
the new variable, C', is the mean value along all six faces of the box. The diffusive terms on the right-
hand sides of Eqs. (36), (38) or (39) would still be evaluated with the original values of the tracer
variable since there is no gain in accuracy to be had by changing variables here, but the left-hand sides
of these equations would be evaluated using the refined tracer anomaly variable. In the case of salinity,
the variation of the salinity over the six sides of a box may be 0.1 psu so that the influence of the
continuity equation in the salinity balance will be reduced by a further factor of ten or more, so that
instead of the continuity uncertainty accounting for 99% of the error in this equation, it could account
for no more than 20% of the error. In this way the salinity conservation statement will tend to represent
the desired advective-diffusive balance.
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By choosing the box-average tracer value as the mean that is subtracted from each box, one has
essentially forced the divergence form of the conservation statements to have the same balance that is
present in /3-spiral methods, namely the advective-diffusive balance. Unlike the /3-spiral methods
however, this proposed box-inverse method also carries the continuity equation (Eq. (36) with C = 1).
In this way, the method recommended above can be interpreted as a /3-spiral method, but with the
inclusion of the continuity constraint. One could of course add the normal /-spiral equations to a box
inverse method, but the grids on which the velocity components are evaluated are different for an
advective and a divergence grid. The above procedure achieves the same physical balances in the
equations as would a combined /-spiral and box inverse model, but without any complications due to
the different grids, since one uses the box-model grid throughout.

When using anomalies from box-averaged data rather than from a single constant value, the sum of the
tracer conservation equations over more than one box does not have a physical interpretation (Rintoul
and Bindoff, personal communications, 1991). Using salinity as an example, if a single mean salinity
of say 35 psu is used to form the salinity anomaly variablc for the left-hand side of the conservation
equations, the sum of these equations over many boxes does not amount to the conservation of salt
over the boxes, but it does represent the conservation of a different variable, namely (S - 35 psu). But
with a mean salinity that varies from box to box, there is no such interpretation. Should one worry
about this? I think that this is not a concern for the following two reasons. First, by regarding the
above procedure as a fl-spiral method with the added continuity constraint, the issue of what the sum of
the salinity conservation statements represents does not seem so pressing since this has not been part of
past /-spiral methods. Second, if after performing an inversion one calculates the total salt imbalance
(not salt anomaly imbalance) summed over all the boxes, the answer will be dominated by the errors in
the continuity equation for each box multiplied by the mean salinity of 'hat box. This will be very close
to the global-averaged salinity times the global-averaged volume flux imbalance, no matter what mean
salinity is chosen for the mean value of each box in the inversion. For these reasons I believe that
using a salinity anomaly that is defined differently for each box is a viable procedure. Of course, proof
of the pudding will be in the eating.

CONCLUSIONS

This paper has derived the conservation equations for scalars (including potential density and spiciness)
with respect to both neutral surfaces and potential-density surfaces, and in both the advective form
which is applicable to the /-spiral method, and in the divergence form that is used in box-model
inversions. In the limited space available, conservation statements for potential vorticity were not
addressed. The salient findings of the paper are listed below.

- Scalars are advected by the Lagrangian-mean velocity vector rather than the Eulerian-mean velocity
that appears in the geostrophic and thermal wind relations, and it may well be important to recognize the
distinction between these velocities. A simple parameterization for the difference velocity (the Stokes
drift) is proposed and this should be easy to implement in inverse models. Even when this Stokes drift
is relatively small, it may well be significant for the lateral advection of traceis because it will be much
more closely aligned with the epineutral tracer gradient than will be the Eulerian-mean lateral velocity
vector. The magnitude of the estimated Stokes drift is displayed in Figures 2 and 3 for a single neutral
surface in the world ocean, and values in excess of 1 mm s- 1 are common. A lateral velocity of this
magnitude down the epineutral tracer gradient causes as much water-mass conversion as vertical mixing
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processes. This highlights the importance of the distinction between Lagrangian and Eulerian
velocities.

The nonlinear nature of the equation of state has been shown to cause significant errors in the
diapycnal velocity when it is deduced from the commonly used advection-diffusion balance for
potential density. The potential density variable is significantly nonconservative and more care must be
taken when writing a conservation equation for potential density. The terms that have been omitted
from the potential density conservation equation in the past are (see Eq. (20)), (i) a term proportional to
the vertical diffusivity that is largest in the upper 1000 m of the water column, (ii) a term that depends
on the epineutral flux divergence of potential temperature and arises because potential density varies
along neutral surfaces, (iii) cabbeling and (iv), thermobaricity. Each of these terms are too large to be
ignored in various regions of the ocean.

-The omission of the nonconservative terms in the conservation equation of potential density results in
either an overestimate of the diapycnal velocity or an underestimate of the vertical diffusivity (for
wd > 0), or, quite probably, a combination of both. The use of a simplistic potential density equation
also affects the way mixing processes are extracted from the potential temperature or salinity
conservation equations, as is illustrated in Eq. (29).

-Thermobaricity and cabbeling were found to be quite strong in the North Atlantic and Southern
Oceans, causing contributions to the dianeutral downwelling velocity of order -lx10 -7 n s" . These
in turn make a large impact on the conservation equations of scalars in these regions and probably also
cause significant vortex stretching in the conservation equation for potential vorticity. Of the two
processes, thermobaricity is rather smaller than cabbeling except in the Antarctic Circumpolar Current
where it is at least as large as cabbeling and also of the same sign.

- The contributions of both thermobaricity and cabbeling to water-mass conversion at a thermoclinic
front have been compared with the epineutral mixing of potential temperature. The ratios of these
processes were found to be significant and to be proportional to the changes in potential temperature
and pressure across the front (see Eq. 13). In the Antarctic Circumpolar Current each of these three
processes were found to be equally important, especially because the net water-mass conversion
achieved by the lateral diffusion term averages to zero whereas cabbeling and thermobaricity have a
consistent sign across the front.

- Many of the pitfalls with forming a potential density conservation equation are avoided if one uses the
S and 0 equations separately rather than attempting to form a "density" conservation equation. The
remaining differences are due to the difference between the epineutral flux divergences and the
epipycnal flux divergences of S and 0, as in Eq. (31).

- Conservation equations for conservative variables (like potential temperature and salinity) are affected
by the nonlinear nature of the equation of state when a model's lateral mixing is directed along
potential-density surfaces rather than along neutral surfaces. The differences between these two lateral
mixing parameterizations are explored and are documented in Eqs. (26) and (30). Several terms arise
that are significant when the reference pressure of the potential density is significantly different to the
in-situ pressure, and two terms remain even when this pressure difference is zero. The difference
between epineutral and epipycnal mixing of tracers is important at regions of large epineutral gradient of
potential temperature (i.e. at thermoclinic fronts).
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- The 'orthogonal' variables on the S-O diagram, spiciness and Veronicity, are significantly
nonconservative variables and the nonlinear terms that appear in their conservation equations are of
similar magnitude to those that appear in the potential density equation. It has been shown that one
cannot afford to write conservation equations for either potential density or spiciness as though they
were conservative variables.

• Box inverse models need their conservation equations cast in the diverge -e (or flux) form, and it is
shown that in this form, the conservation equation for 'density' or 'mass' is really simply a volume
integral of the incompressibility equation.

* One often reads that a box inverse model has not required vertical mixing in order to explain the data.
Here it has been argued that these models have been set up in such a way that the signatures of all types
of mixing processes are well hidden behind the noise due to errors in the continuity equation. The
imbalance in the continuity equation is directly reflected in the tracer conservation equations, and is a
consequence of the need to write the conservation equations in the divergence form. This causes the
tracer equations, and particularly the salinity equation, to be linearly dependent with the continuity
equation, so causing a reduced rank in the system of equations. This is similar to the well known
problem that, if the mass flux across an ocean section is not zero, the heat flux across the section is
different if the temperatures are measured in Kelvins rather than in degrees Celsius.

• A very simple solution to this deficiency of present box-inverse models is proposed: it is to subtract a
suitable mean value from the values of a tracer before the conservation equations Lre evaluated. This
should have the effect of (i), increasing the rank of the solution, (ii), extracting information on the
advection and diffusion of salinity, thereby constraining both the interfacial advection and diffusion,
and (iii), making the conservation equation of potential temperature independent of that of salinity.

• It is argued that the neutral surface framework provides the best link between advection and diffusion
of tracers in that the individual terms that comprise the advection of tracer are not large in comparison
with the total advection of tracer. In this way, uncertainties in the lateral velocity vector do not
introduce as much uncertainty into the left-hand side of these conservation equations as they do in
Cartesian coordinates. This is especially true of the e equation, Eq. (12) that is totally independent of
the lateral velocity vector. This e equation has the added advantage that it does not have a lateral
Laplacian term (which is relatively noisy) on the right-hand side.
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1. Introduction

In general, it is difficult to objectively compare oceanic model results to observations, as
observations are usually noisy and inaccurate, and the sample too limited, resulting in a small
signal-to-noise ratio. The noise of the observed signal results from both measurement uncertainties
and real disturbances, like mesoscale eddies when studying the general circulation, vortical modes
when studying internal waves, or interannual fluctuations when considering the seasonal cycle; this
noise mostly has large correlation scales, so that simple point-by-point comparisons with model
predictions are difficult to interpret, and a multivariate viewpoint is needed. Moreover, and this is
specific to the oceanic case, most motions are externally forced but precise information is lacking on
the forcing and on the initial conditions. Thus, even a perfect oceanic model will not provide
prcdictions that are fully consistent with the observations, i.e., within their uncertainties, and it is
necessary to distinguish between model inadequacies and the model response uncertainties caused
by poor knowledge of the input data.

This applies in particular to tropical motions, which are primarily wind forced and could be
simulated deterministically for the most part if the wind stress were accurately known. However,
information on surface wind is sparse and noisy, and the bulk formulae used to estimate the wind
stress are rather inadequate. As equatorial model simulations have become increasingly realistic,
visual comp4,isons, which reveal obvious differences, are unable to unambiguously identify model
inadequacies, and more refined validation procedures are needed. Frankignoul et al. (1989) have
thus developed a model testing method based on multivariate statistical analysis that could take into
account explicitly all the observational uncertainties. So far, the method has been used to test and
intercompare simulations of the tropical ocean. However, the approach is general and could be used
to test dynamical models of the internal wave field, as suggested below.

In the next section, the model testing method is described in a general manner. A possible
application to internal wave studies is then briefly discussed. In section 4, the method is illustrated
by summarizing the testing and intercomparison of model simulations of the tropical Atlantic.

2. The multivariate model testing method

The simulation of oceanic motions can often be represented as an input-output problem. A
model is driven by a prescribed forcing field f(x,t), which could include the initial conditions, and
it predicts in particular the space/time behavior of a variable that is 'dso observed. We denote the
model prediction by m, with m = L(f). To test the model, m is considered in the whole x-t domain
where the model is believed to be realistic and observations, denoted by d, are reliable, which is
normally a highly dimensional space. The observations are usually inaccurate, so a probability
region more properly describes the true oceanic state (Fig. 1). As the forcing field is generally not
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Fig. 1 Sketch of the effects of data uncertainties on the comparison between model predictions
and observed data, from a multivariate statistical viewpoint.

known accurately, it should be considered as a (noisy) realisation of the true forcing field, and other
equally plausible input data often are available (e.g., different wind stress products) or could be
generated by Monte Carlo technics. This is represented in Fig. 1 by a probability region for the true
forcing <f>. Thus, several equally plausible model responses can be generated, and the model
prediction mn really should be considered as the sum of the (unknown) model response to the true
forcing field, say <ni>, and that resulting from the input errors, which is again represented by a
probability region in Fig. 2. If the multinormal assumption holds, these uncertainties can be
described by their error covariance matrix, denoted by D for the observations and M for the model
predictions. The model testing problem can now be viewed as that of comparing two noisy vectors
with unequal error covariance matrices. It should be stressed that a crucial, and often cumbersome,
step in the procedure is the evaluation of the two error covariance matrices; this may require much
data analysis and many simulations.

The agreement between the observations and the simulations is characterized by the misfit

T2 = (m- d)'(M + D)"1 (m- d) (1)

which provides a measure of the differences between the two fields, weighted by the data
uncertainties. If the null hypothesis that <m> = <d> holds, (1) is the appropriate test statistic
which is distributed as a X2 variable (or a Hotelling T2 variable if sample estimates of the error
covariance matrices are used), and the usual acceptance and rejection rules can be applied. If the
null hypothesis does not hold, T2 is approximately distributed as a non-central X2 variable, and
confidence intervals can be constructed to compare different models or model versions. Details are
given in Frankignoul et al. (1989).

In practice, however, this cannot be done unless the dimensionality of the system is first
strongly reduced. Indeed, the error models normally are very approximate (they are either estimated
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depth for the internal wave frequency band (0.2-0.4 cph) in a 4-day period during MODE (the
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corresponding isotherms. Bottom: Time series of HKE averaged over the line of moorings 2, 3
and 5 for three frequency bands in the internal wave continuum. From Frankignoul (1976).
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from a limited sample or from a necessarily oversimplified error analysis), so that the inverse in (1),
even if it exists, is dominated by unreliable information. A strong data compression is thus needed
for the problem to be well-posed. This can be done efficiently using principal component analysis,
as illustrated below. The main point is to perform the model-reality comparison in a sufficiently
small orthonormal space where the main "trustable" features of both model simulations and
observations are well represented, and the error models sufficiently reliable. Noisy details are
filtered out, but of course so is a small part of the signal. Note that the test is very stringent as no
model is expected to be perfect. However, much progress may be expected from an understanding
of the discrepancies between models and observations, and the method is very efficient at
distinguishing the true differences from those due to data uncertainties.

3. Application to internal wave studies

These concepts could be applied to the internal wave case. Suppose for example that we want
to test a model of the dynamics of the internal wave field, which requires understanding their
sources, sinks, and main interactions. Theoretical models of internal waves do not yet predict how
the various energy sources control their spectral distribution, but plausible generation mechanisms
have been suggested (wind forcing, topographic scattering, interaction with the mesoscale shear
flow, forcing by the barotropic tides, etc.), and predictions of the spatial and temporal evolution of
the averaged internal wave properties could be obtained. In particular, the variations of the total
internal wave energy E(x,t), should obey the radiation balance equation (Muller and Olbers, 1975)
which can be written in the approximate form

(dt + UV) E = Si(U) + Si(atmosphere) + Si(bottom) +... + Sd (2)

where U(x,t) is the mean current, Si denotes the source terms, and Sd the dissipation. If models
are available for the source terms, they can be tested by comparing the predictions from (2) with
corresponding observations. Internal wave spectra have been shown to be modulated both on the
seasonal scale (Fig. 2), and on short time and space scales (Fig. 3); also, evidence of energy
propagation and/or transfer has been found (Fig. 4). These observations contain critical clues on
internal wave energy sources and sinks, but their interpretation has been disappointing, as the
dynamics is complex and the signal-to-noise ratio very low.

We believe that the key to a successful interpretation will be a multivariate model testing
approach where predicted changes are compared to the observed ones, as this strongly enhances
statistical significance in model-observation comparisons (see, e.g., Hasselmann, 1979). However,
the input in (2) will be poorly known: the wind stress is difficult to observe at the internal wave
scales, the mean shear can only be coarsely estimated from current-meter data, the bottom
topography and bottom currents are inaccurately known, and little information will be available on
the boundary conditions for the region of interest. Thus, there will be a large uncertainty in the
forcing data that will have to be considered in addition to that of the internal wave spectral
estimations, when testing the theoretical predictions. The method of section 2 should then be
applicable, even if some adaptation to the problem will be needed. On the other hand, neglecting the
effects of data uncertainties or the multidimensionality of the fields could result in erroneous
conclusions.
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Fig. 3. Monthly high-frequency (0.1-2 cph) HKE from 17 data sets in the North Atlantic,
normalized by the Brunt-VWisKIh frequency, versus time of year. The solid line connects the
monthly averages. From Briscoe (1984).

One remark is in order. Dynamical models of the internal wave field will unavoidably contain
parameterizations and adjustable parameters (e.g., relaxation or dissipation time). A poor choice in
the values of the arbitrary parameters may also be responsible for model-observation discrepancies,
without impairing the model validity. Thus, it is of interest to include model tuning in the statistical
method. If there is only one or two parameters, their influence on the misfit (1) can be easily found,
with the optimal choice corresponding somehow to its minimum (see an example in Frankignoul et
al., 1989). However, if there are many parameters, the problem becomes tedious. Recent efforts at
combining model testing and parameter optimization by inverse methods are underway, and they
may also prove useful in the internal wave case.

4. Application to the seasonal variattdity of the tropical Atlantic

To illustrate the model testing method, let us briefly consider its application to the numerical
modeling of the tropical circulation. Specifically, we want to verify whether the OPA general
circulation model of LODYC is able to simulate the mean seasonal changes in the surface dynamic
topography of the tropical Atlantic, approximated by the 0-400 db dynamic height. The observed
changes have been recently estimated from historical data by Duchdne and Frankignoul (1991),
who performed an extensive error analysis to also estimate their error covariance matrix. The
observations are compared in Fig. 5 (left) to the prediction of the OPA model (right). The
simulation is the mean of a run forced by 1982-1988 monthly observed winds (Morlire and
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Fig. 4. Schematic representation of energy correspondences in frequency-depth space observed
at Site D (39020'N, 70°W) during a two-month period. From Frankignoul (1974).

Duchdne, 1991), so that the effects of the random wind stress errors and the interannual variability
are automatically represented in the error covariance matrix that is calculated from the 7-year model
response. The error associated with our lack of knowledge of the drag coefficient for the wind
stress is also taken into account in a simplified manner by assuming a 20% random uncertainty in
its value, as in Frankignoul et al. (1989).

The problem is to establish whether the two series of 12 monfily maps that describe the mean
seasonal changes in space and time are consistent with each other, i.e., are within error bars. The
overall dimension is high (number of grid points times number of months), and the noise correlated
(due to data interpolation, forcing errors, etc.). Also, the sample used to estimate M is small, and D
only is an idealized error model. Thus, the details of D and M are unreliable and a strong data
compression is required. It is efficiently done by using common principal component analysis: the
first four common empirical orthogonal functions (EOFs) (Fig. 6) are sufficient to represent about
90% of the mean simulated changes around the annual mean and 80% of the (more noisy) observed
ones. Only two additional orthonormal vectors are needed to also represent the annual averages,
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Fig. 6. The six orthonormal basis vector for the model-observation comparison. The top four
vectors are the common EOFs of the seasonal variations.

which project poorly onto the common EOFs. In Fig. 7, the observed (dashed line) and simulated
(continuous line) seasonal variations are represented in the reduced space, together with 95%
confidence intervals estimated from the diagonal terms of the error covariance matrices, assuming
normality. Note that the latter are based on univariate statistics and do not represent error
correlation. Nonetheless, Figure 7 suggests that the differences between the observations and the
simulations in Figure 5 cannot be entirely explained by the data uncertainties. This is confirmed by
the results of the statistical test in Figure 8 with (left) and without (right) the annual mean. Note that
a further data compression was done in the time domain by considering only four seasons (the
dimension is thus 4x<4 and 6x<4, respectively).
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Fig. 7. Observed (dotted line) and modeled (continuous line) seasonal variations in the reduced
space. The error bars are univariate estimates of the 95% confidence intervals.

The results show that the model is not consistent with the observations, as the misfit is much
larger than the critical value T2 .ri, for perfect consistency at the 5% level. Recall that (1) is a
measure of the (square) dfcrerce between simulations and observations, normalized by the data
uncertainties, and not an abso .ite measure of the fit; if the data uncertainties had been larger, T2

would be smaller but the r,odel would not perform better. The test only shows that the model-
observation differences are about three (no mean) or four (with mean) times (i.e. (T2/T2crit 1/2)
larger than expected from the data uncertainties, at the 5% level. This indicates that there remains
substantial room for model improvements. TIle results also show that the GCM performs better for
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the mean seasonal changes around the annual mean than for the whole signal. This has also been
found for all other models and variables that have been considered, and presumably redlects the fact
that the long-term mean depends more on the representation of the dissipation processes, which is
generally very approximate.

Figure 8 also represents for comparison the test results for two simpler models, the linear,
multi-mode model of Cane (1984) and the 2-layer nonlinear LODYC model (Fdvrier, in
preparation). The test values show that the tropi'-al Atlantic data are accurate enough to distinguish
between the performances of different oceanic models, and the OPA model performs significantly
better then the two other models, consistently with its much higher sophistication. This illustrate the
usefulness of the model testing approach, and the irterest of quantifying as realistically as possible
all the data uncertainties.
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Fig. 8. Value of T2 for three models (see text) used to simulate the seasonal cycle of surface
dynamic topography in the tropical Atlantic with (left) and without (right) annual mean. The error
bars represent approximate 95% confidence intervals, the dashed line the critical value for T2 at the
5% level.
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ABSTRACT

We attempt to show that the use of stochastic inverse methods allows us to precisely test
proposed models of oceanic dynamical structure. It is the integrative property of the propagating
acoustic wave that enables us to "view" ocean dynamics on scales that would be impossible with
traditional ocean instrumentation. Unfortunately, because there has been a lack of propagation
experiments conducted where the ocean dynamics are well understood, we are unable to fully
demonstrate the use of the concepts we present. Additional investigations are required.
Theoretical and numerical studies of acoustics in "numerical oceans" can provide new
information on the scales of ocean dynamics that are important for sound propagation. In turn,
this information will tell us how thoroughly we need to model ocean variability in order to
predict propagation characteristics. We show that the important scales of ocean variance are
much larger than the acoustic wavelength, when the ranges correspond to standard
range/frequency combinations. Finally, we present some ideas for future work using acoustics to
verify a "new model," and discuss the temporal and spatial scales for a possible experiment.

INTRODUCTION

Our comprehension of wave propagation in random media has progressed to the point where
theoretical predictions of the fluctuations in sound waves that have passed through a medium
with a known autocorrelation function of the acoustic index of refraction are quite accurate. Thus,
the focus of the 'Aha Huliko'a meeting on "new" ocean dynamical and internal wave models is
not only an important step in improving our understanding of ocean processes, but could herald a
significant advance in our ability to test acoustic scattering predictions. In this paper, we have
attempted to provide an overview of the elements of ocean dynamics required by the acoustician
to make the ocean/acoustics link.

First, we present a brief review of the parameterization of ocean internal waves and finestructure
used in acoustic propagation theory, and illustrate some of the progress being made in predicting
acoustic scattering. Second, using a specific example, we demonstrate the power of ocean
acoustic stochastic inverse methods. Note that, by stochastic inverse, we mean "imaging" the
correlation or spectral properties of the index of refraction field rather than the index of refraction
itself. We then discuss how one sets limits to the wavenumber/frequency bandwidth
requirements of ocean models in the context of acoustic scattering. Finally, we present some
ideas for a future coordinated ocean/acoustics research effort.

Ocean internal waves have a dramatic effect on sound propagation. Consider the numerical
examples of acoustic propagation shown in Figure 1. The intensity of a sound wave propagating
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in the depth/range plane is shown for depths to 4000 m and for the range interval from 35 to 65
km. Figure l(a) has a vertical sound speed profile that is range-independent. Figure l(b), in
addition to the range-independent profile of l(a), includes random internal wave induced
fluctuations. Sharp foci of sound channel convergences are seen in 1(a). In I(b), the internal
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Figure 1. The intensity of a sound wave propagating in the depth/range plane is shown for depths
to 4000 in and for the range interval from 35 to 65 km. The vertical sound speed is derived from
the Munk canonical profile, and propagation is calculated using a wide angle parabolic equation
(PE) code. The narrow beam source is above and near the axis of the sound channel. (a) Range-
independent case, without internal waves. One sees sharp foci due to sound channel
convergences. (b) As in (a) with internal wave variability added into the environment. The rns
internal wave displacement is 7.3 m. The foci are smeared and diffuse and ribbons of intensity
have formed.
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wave perturbations have destroyed the foci and the sound field has broken up into ribbons of
intensity. These ribbons of sound have been directly observed and are discussed in a paper by
Uscinski and Potter (1988). We wish to predict the scattering statistics of these wave fields, and
exploit them using stochastic inverse methods. In a discussion of internal waves, two points
regarding acoustic propagation must be emphasized: (1) Because sound is the only form of
energy (other than neutrinos) that can propagate long distances in the sea, it may be possible to
monitor the ocean using inversion of information on acoustic travel time. (2) In order to study
sound propagation in the stochastic ocean, the dynamical space/time statistics must be known.

SOUND VELOCITY FLUCTUATIONS IN A STOCHASTIC OCEAN

The coordinate system we use to discuss stochastic ocean behavior is shown in Figure 2. The
two-point separation coordinates are 4 = x I - x 2, T = y I - Y 2, = z I - z 2, r = t I - t 2 , and the
Fourier conjugate variables in the wavenumber/frequency domain are al, c2, 3, and o.
Propagation takes place in the x-dqection.

"2 , x - Propagation Direction
(X 2,Y 2, 2,t 2)

* (xt,Yt,z 1,tl)

z

Figure 2. Coordinate system.

Following Uscinski (1986), the index of refraction, n, is written as the sum of a depth-dependent
deterministic component, nd, and a stochastic component, n 1.

n (x, y, z, t) = I +had(Z) + <9 2>,'/ n &Ix y, Z, t). (1)

The rms index of refraction fluctuation, <.t 2>'h is related to sound speed fluctuations, 8C (arising
from vertical displacements or velocities in the propagation direction),

<A2>_ <5C 2>1,1(22 Co ' (2)

where C0 is the reference sound speed. We represent the two-point statistics of n 1(x,y ,z ,t) by
the power spectrum,

S ( 3 x2,1,co). (3)

In general, <g2> is a function of depth. However, if a ray traverses a narrow r,,nge in depth, <I. 2>
can be considered constant. Subsequently, we will discuss experiments carried out at Cobb
Seamount in the N.E. Pacific at a depth of 1000 m, and this is such a region. For the general case,
the depth dependence provides little or no difficulty for simulations but adds complexity to
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theoretical predictions of the moments of the acoustic field. We impose the traditional internal
wave assumptions of horizontal isotropy and vertical homogeneity on the medium statistics. For
simplicity, we will assume that locally the buoyancy frequency, and hence <g2> is depth
independent. Under these conditions, the space/tim.- spectrum of n I(x,z ,t) may be written,

S(3,o), where c 2 = t 2 +a 2
2. (4)

(We define the spectrum such that the integral over positive frequencies and wavenumbers is
- 1.) The horizontally isotropic medium corrlation function is,

R ( , ,,t) = < L2> F-S ((x, P, ) ,  (5)

where F {..} indicates a Fourier transform. Note that R (0,0,0,0) = <pL2>. In the theoretical
treatment of scattering, the medium is represented by a projection of the medium correlation
function in the direction of wave propagation called the transverse correlation function (TCF).
The TCF is obtained from the correlation function by

7.~j R (4r) d4 R 2 rt) d4 6R (,t) = L R (0,0,0) = < <,2> (6)

R ., is the function we will discuss in the stochastic ocean context. The Fourier transform of R .
is written S .(3, (o), and is called the transverse spectrum. Note that 1, the transverse horizontal
coordinate, has been suppressed (i.e. il = 0 ). The il separations will not be treated here.

The ocean processes we consider are tides, internal waves and finestructure. Finestructure is the
name given to the poorly understood portion of oceanic fluctuations in space and time that do not
possess a wave-like dispersion relationship, but give appreciable variance in 8C. As a specific
example, we turn to consider the TCF used to study the acoustic propagation regime that existed
during the Mid-Ocean Acoustic Transmission Experiment (MATE).

THE MATE TCF

At the 'Aha Huliko'a Meeting, our goal is to develop a "new" stochastic ocean rnodel. The model
we seek to replace is based on considerations of a spectrum of linear internal waves, and the
parameters and spectral dependencies of the model were obtained by fitting the model to data
sets, i.e. "data fits." Many authors have pointed out that linear internal waves alone cannot
represent observations, and attempts to model the additional variance have been stymied by
insufficient data in most experiments.

The Mid Ocean Acoustic Transmission Experiment (MATE) was designed to provide a detailed
set of both temporal and spatial oceanographic and acoustic measurements. The MATE
oceanographic setting (1000 m depth, Lat. 46046'N., Long. 130'47'W) typifies open ocean
conditions. The exception is a strong baroclinic tide caused by the presence of several seamounts.
The oceanographic measurements during MATE were sufficient to overdetermine S (c,43,c0).
Details of the data analysis for finestructure and internal waves are found in Levine and Irish
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(1981) and Levine et al. (1986). It was possible to obtain a model of S (a,13,o) for MATE based
upon a fit to the various projections of S. We will now show that insight into the models can also
be obtained from the MATE acoustical measurements.

The general form of the TCF is written for the case of separable vertical and time correlations as

SRlw~s({, ,'c) d4 (YIW,trs(0 VIwFs('T)

R~jw.s(,t)=_ Rj'w rs(0,O,0) =L'wp's Oiw ps(O) V'4iw,,s(O) (14)

Lp;rwps = R jjwps(0,0).

For internal waves, following Uscinski (1980) we write

R .jw( ;r) = 2 G0 ,H71 Gj G(o)) [7 1(P) cos(pZ)d P3 cos d (oydo, (15)

where G(o)) and H (13) are obtained from the model presented in Levine et al. (1986); r.) arises
from the internal wave dispersion relationship,

r .2 = V 02 0.2, and

G =f G(o)do, H,= H(13)d13. (16)

03i and (o, are the inertial and buoyancy frequencies, respectively. 13 is the vertical wave number
corresponding to the lowest internal wave mode. The model in this form is written as

(632_ W,21, P. ,p W2-011
G.(co)- =- _P H()= p2+2 -0+)2 (17)

With the exception of the variable spectral slope, p, this model is the same as that of Desaubies
(1976). The Desaubies and GM formulations (for GM see Munk (1981)) specify p = 3. Also, this
model uses a continuous vertical wavenumber representation rather than the modal
decomposition used by GM. The parameter, t, is the bandwidth parameter of Desaubies. Note
that the -'r or 13-o functions are separable. This fact simplifies both theory and numerical
simulation.

For finestructure, we use a form based upo,, that of Levine and Irish (1981). They postulated two
processes: one at low wavenumbers and low frequencies that is characterized by a slow decay
compared to the inertial period, and another process that is characterized by high wavenumbers
and frequencies, that is modulated by the internal wave field. The high wavenumber process has
a very low variance, and thus little effect on acoustic propagation. It has been discussed by Ewart
et al. (1983), and will not be mentioned here except in relation to the acoustic phase correlations.
The low frequency finestructure model has an asymptotic dependence in the spectral domain of
o -2, 132, and oy- 2. The forms of RFs and R .,FS are
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rrr%~+ [ 12i 1/2]
=~(,,r exp l[z7~ ~ J e "'I and

R OFS) lFS(,) L ,,wS.LKi(/Lv) e-I'. (18)

We have taken Lp;Fs = 2L1 ,w = Lp jw; K 1 is the K I Bessel function.

Armed with the specific form of the TCF, we now proceed to discuss the observed acoustic
fluctuations and stochastic inverse predictions. For a more general discussion of the forward
problem, see Ewart (1986).

A PHASE STOCHASTIC INVERSE

For fifteen days during the time that MATE oceanographic measurements were made, acoustic
pulses having center frequencies near 2, 4, 8, and 13 kHz were transmitted along an 18.1 km path
near 1000 m depth. These transmissions were made between a fixed set of co-located
transmitters and fixed, spatially separated receivers (four receivers were located at the corners of
a rectangle 3 m high by 235 m in a plane transverse to the propagation path; see Ewart and
Reynolds (1984)). With a maximum angle of just over 30, the path was nearly horizontal. The
transmission path, and a single realization of the density field from source to receiver is shown in
Figure 3. We wish to obtain the time-varying spectrum of this density field by stochastic inverse
methods.

S.d I.
Mir

Figure 3. A single realization of the density field along the MATE transmission path from source
to receiver. The measurements were obtained from a depth cycling run of SPURV. The potential
density shades range from 27.3 (top) to 27.5.
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We can learn a great deal from the temporal correlations of the acoustic phase. (Aside: in a
geometric scattering environment, pulse travel time and phase are interchangeable.) The tidal,
internal wave and finestructure processes are clearly seen in the phase spectrum from the 15 day 2
kHz data set (Figure 4). The phase spectra for the other frequencies of MATE are virtually
identical out to temporal frequencies well above the buoyancy frequency, indicating the
geometric nature of the phase fluctuations. The spectrum has been expressed in <Rx2> units by
multiplying the measured travel times by C0 / (Lp R )", with C0 = 1480 m/s, L,=4600 m, and
R=18.1 km. The validity of this conversion relies upon the travel time being geometric. The
integral of the spectrum is <1±2>. The diurnal, semidiurnal, and quarter-diurnal (overtone of the
semidiurnal) tidal lines are evident, as is the sharp drop-off at oi and co,. The dashed lines
indicate a fit to the deterministic tides using a simultaneous deterministic/stochastic inverse to a
model that includes a trend function, tides, finestructure and internal waves. The finestructure
and internal waves were modeled as the Fourier transforms of Equations 15 and 18, respectively.
(If the phase is geometric, the phase spectrum is related to the Fourier transform of the TCF; see

SD
6I10- =---rr--1r

D u

10- 2

10-

10- 
.> 1 0 -_
0

~10-1110-1o
10-1,

L.,

10 ! I I I II I

0.001 0.01 0.1 1 10 100
cph

Figure 4. MATE 2 kHz travel time (phase) spectrum in <2> units per cycle per hour. The
spectral estimate was computed using the DPSS method described by Slepian (1978). Four
discrete, prolate spheroidal windows were used. The dashed lines are the tidal components
obtained by the fit described in the text; the spectral windows are evident in the tide lines.
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Uscinski (1986).) The tides were modeled as a sum of sine and cosine terms with independent
coefficients. This stochastic inverse method is the frequency domain equivalent to the inverse
published by Ewart (1986) where the correlation function was used. The results of the inverse can
be used to remove the deterministic functions from the time series. The 2 kHz acoustic phase
iecord in the time domain is shown in Figure 5, before and after removal of the trend and tide
model. Although the determinism of the tides is assumed, the large baroclinic tide is almost
certainly time dependent over the 15 days.
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Figure 5. 2 kHz phase data in the time domain: (a) as recorded, and (b) with the deterministic
trend and tidal components removed. The trend function is shown by the dashed line in (a). Note
that the vertical scales are different.
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To compare the travel time spectrum to the more familiar moored temperature spectrum, a
similar inversion is applied to the temperature time series. The 30 day temperature record is
windowed to the same 15 day period as the acoustic data and resampled to the same time grid.
The modeled form of the temperature spectrum is a different integral of S (aC,P,o), i.e., the
moored spectrum:

f f S(a,o)dad3. (19)

To get the moored spectrum at the ray depth in <g 2> units, we convert the temperature
fluctuations to sound speed changes and use Eq. (2). Plots of both the travel time and
temperature spectra in these units are illustrated in Figure 6. The plots include only the stochastic
components, with the tidal components removed as described above.

Three distinct regions, separated by (ol and co are indicated. The modeled o0-dependence for
each region is shown. Region I is represented by the low wavenumber/low frequency
finestructure given by Eq. (18). We see that the moored and the travel time spectra are identical
within statistical limits. These limits are large due to the short (15 day) time record. This supports
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Figure 6. Plots of the travel time and moored temperature spectra in <.2> units. The tidal
components have been removed; only the stochastic components remain in the data.
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the model having no distinct dispersion relation (i.e. the moored temperature spectrum and the
travel time spectra have the same spectral slope). The 500 hour value of to used in the model
arises from the constraint of equal variance of finestructure and internal waves found in the 3-
domain (Levine and Irish, 1981). In region II, we see strong evidence that the internal wave
model is correct. The differing spectral forms of 0-1'5 for the moored spectrum and o-2s for the
travel time spectrum support the effect of the internal wave dispersion relation (i.e. the travel
time spectrum differs in spectral slope by -1 from the temperature spectrum). Also, the spectral
cutoffs, the value of p, and the normalization of the model are supported. In region III, the 0-3

spectral slope of the moored spectrum and the o-4 spectral slope of the travel time spectrum
provides strong evidence that the high wavenumber finestructure is advected by internal waves
(hence the effect of the internal wave dispersion relation).

We have attempted to show both the complexity of the ocean TCF as well as the large diversity
of oceanographic data needed to confirm ocean spectral models. The ability of the acoustic field
to give us an integral constraint on the model through phase correlations must be emphasized. It
should also be emphasized that the inversion was done individually on each data set. A combined
inversion is also possible (and is under proposed study). The combined inversion would impose,
in a consistent manner, the relationships between the oceanographic and acoustic data sets
exhibited in Figure 6. A future combined oceanographic/acoustic experiment would exploit these
same relationships in a test of the new dynamical internal wave model.

AATE ACOUSTIC FIELD MEASUREMENTS

MATE demonstrated that the acoustic scattering conditions can be determined when extensive
environmental measurements are made simultaneously with acoustic field measurements.
Although MATE provided a long series of temporal acoustic measurements, only a few spatially
separated receivers were used. To augment our understanding of the spatial characteristics of the
scattered field, AATE (the AIWEX Acoustic Transmission Experiment) was designed to make
both vertical and temporal measurements of the acoustic field. The transmission experiment
(conducted under multi-year ice in the central Beaufort Sea) consisted of four co-located
transmitters (2,4,8,16 kltz) suspended beneath the ice at 153 m depth. These were positioned 6.43
kin from a depth cycling array of 3 receivers, separated by 51 m (the depth cycle was 51 m
providing a 153 m vertical aperture). Simultaneous environmental measurements were made by
several investigators from several institutions. A study of AIWEX moored data by Levine (1990)
has resulted in an internal wave model.

Figure 7 displays the travel time and log-intensity spectra measured over two time periods during
AATE. (A strong wind event occurred between the two time periods, making interpretation of the
travel time measurements across the event difficult, if not impossible.) The spectra in Figure 7
may be compared to those taken during MATE. Predictions from the weak-scattering theory of
Desaubies (1978) are shown with the observations from before the wind event. The acoustic
fluctuations are significantly less energetic ( = 1/50th ) than those expected under canonical GM,
open ocean conditions (the GM-parameters have been adjusted for the AIWEX buoyancy
frequency profile). In addition, the spectral slope of the travel time spectra is a power less than
the prediction. These results are similar to those obtained from measurements made at the
AIWEX environmental moorings (Levine, 1990). Note that the travel time spectra observed after
the wind event display a peak at the local inertial frequency. This feature is also seen in the two
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Figure 7. AATE observed log-intensity and travel time spectra for a 3 day time period before a
wind event and a 4.3 day time period after the same event. To show the temporal behavior, a
fixed depth data series was obtained. Spectra obtained from the 2, 4 (dashed) and 8 kHz data sets
are shown. Predictions obtained using the canonical GM-model are overplotted on the left-hand
graphs.

dimensional 2 kHz travel time spectra shown in Figure 8. The presence of the inertial peak after
the wind event shows a serious lack of stationarity. This complicates modeling, but also indicates
that additional interesting oceanographic processes were piesent after the wind event. Sorting out
the mechanisms requires close examination of the environmental data taken during these two
time periods.

A goal was to invert the AATE acoustic phase measurements and obtain a prediction for the
internal wave/finestructure spectrum, analogous to what was done with the MATE results.
Though the AATE travel time measurements were made to accuracies of a few microseconds out
of a total travel time of 4 seconds, the travel times are contaminated by mooring motions of less
than 1 cm. This contamination makes their use for an inversion problematic. However, when the
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Figure 8. AATE travel time spectrum as a function of vertical wavenumber and frequency
estimated from the 2 kHz measurements. A peak is observed near the inertial frequency in the
spectrum from after the wind event.

scattering is sufficiently weak, stochastic inverse predictions are possible from the amplitude
measurements. Under the conditions of AATE, we should be able to obtain the environmental
field from inversion of the log-amplitude statistics. This analysis remains to be completed. The
value of the spatial inversion is implied by the predictions shown in Figure 9. These are the
wavenumber spectral filters of acoustic phase and log-amplitude obtained from the Rytov
predictions of Desaubies (1978). The predicted phase and log-amplitude spectra are obtained by
multiplying the medium spectrum, S (P,ro), by the appropriate filter function.

Note that for more traditional open ocean scattering conditions, the acoustic intensity probably
cannot be used as an inversion tool. It is beyond the scope of this paper to discuss comparisons
between theory and measured intensity statistics. But for propagation ranges of more than a few
kilometers in most of the ocean, a multiple-scattering theory is required. When the field has been
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Figure 9. The acoustic filters as functions of vertical wavenumber for co = .3 cph that act on the
medium spectrum for the log-amplitude (a) and phase (b). These functions were obtained using
the weak-scattering theory of Desaubies (1978).

multiply scattered, the intensity statistics can no longer be understood as the action of a linear
filter, like that shown in Figure 9. Fortunately though, the multiple scattering effect on the
acoustic phase is small enough that it can be used as an inversion tool apparently even for long
range cases. Although the AATE measurements provided measurements both in the vertical and
in time, the weak acoustic phase flurtuations were masked by small mooring motions. Because
virtually no other space/time measurements of the acoustic field have been made under conditions
where the scattering field is known, further studies of the stochastic inverse methodology
requires, at least for the near future, taking a numerical approach. Our current work presents
some examples relevant to the oceanographic community and demonstrates the validity of this
approach.

NUMERICAL SIMULATIONS AND THEORY

Much has been learned about acoustic fluctuations from numerical simulations, An example is its
use in testing acoustic scattering theory. The technique of using parabolic equation propagation
codes to test moment theoretical predictions was initiated by Macaskill and Ewart (1984). Since
then, their technique has been modified to include a point source initial condition and other
important physics. The moment theories are full range theories, and not asymptotic at short or
long range; thus, they are important to ocean acoustics.

Figure 10 shows a contour plot of the normalized intensity variance (traditionally called the
scintillation index) as a function of acoustic frequency and range (from Ewart, 1989). The input
ocean model used for the TCF is R .j() = (1 + I I /L)exp(- I I IL) which is asymptotically 3-4

in the vertical wavenumber domain. The normalization is typical of mid-ocean internal waves
with 2> = 3.0" 10- 9, Lp = 4600 m, and L, = 150 m. For frequencies above 1 kHz, the
scintillation index rises to a maximum at a location called the focus of the medium, and then
decays to a value of one. The noise cutoff, plotted as a heavy solid line, demonstrates that for
frequencies above 1 kHz, reaching long ranges will be difficult in the ocean.
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Figure 10. Contours of the normalized intensity variance vs frequency and range. Crosshatched
areas are the asymptotic regions for the log-normal and exponential distributions. The solid line
shows the range limit for a 200 dB source (for Sea State IV noise levels), and the dashed line is
the boundary for multiple scattering.

For our purposes, it is important to note that Uscinski's full range theory for plane wave
propagation is in excellent agreement with the plotted scintillation indices, and with the vertical
wavenumber decomposition of the intensity variance. Similar studies of the point source initial
condition display a scintillation peak that is higher. These features are also obtained with ,heory.
Uscinscki (1989) has demonstrated that when using parabolic equation propagation in polar
coordinates (the natural coordinates for a point source) the predictions from moment theory and
results of the simulations agree to within statistics. For that work a Gaussian TCF was used, and
more work remains to be done for power law media such as the case with internal waves. But the

overall agreement demonstrates that the moment theory solutions are robust over diverse
scattering conditions and ranges. The underlying point is that, for a given medium transverse
correlation function, the numerical experiments have showvn that available theories of stochastic
wave propagation can predict the second and fourth moments of the acoustic field. Our ability to
predict acoustic fluctuation statistics under true ocean conditions then depends upon the validity
of the TCF, and hence the importance to acoustics of the new internal wave modeling effort.

WHAT SCALES ARE IMPORTANT FOR ACOUSTICS?

Our last example is from numerical evaluation of theory. The example comes from asking the
question, "If an oceanographer made vertical measurements of sound speed fluctuations, what
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scales in those measurements are important in predicting acoustic volume scattering?". This
question has been addressed in recent work by Ewart and Ballard (1990). They attempted to
establish the small scale limit for oceanographic measurements required to predict the
scintillation index, given a known TCF. Because ocean scattering is characterized by weak but
multiple scattering, all scales of the medium can theoretically contribute to all scales in the
prediction of the acoustic intensity. Using Uscinski's theory to predict the intensity fluctuations
with depth, the following computation was carried out. Using a TCF derived from the internal
wave model presented in Levine and Irish (1981), and a specific range and scattering strength, a
prediction for the scintillation index was obtained for the condition of an inner scale wavenumber
cut-off in the transverse spectrum of 0.1 cpm (10m). Denote this value of the scintillation index
as SI1. The cut-off wavenumber was then decreased until a scintillation index equal to .9 or 1.1
of SI, was reached. The two regions correspond to before and after the medium focus. This
process was then repeated for a wide range of scattering strengths and ranges. A contour plot of
these 90% and 110% cut-off wavenumbers as functions of acoustic frequency and range is shown
in Figure 11. (This parameterization requires selecting specific internal wave model parameters,

Cutoff Wavelength (m)
unshaded (limit = 0.9 x SI)
shaded (limit = 1.1 x SI)

1021
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Figure 11. The vertical scale to reach 90 or 110 % of the scintillation index calculated to a limit
of 10 in (see text) as a function of range and acoustic frequency. The contours are derived by
selecting the MATE values of < t> , Lp and L. As in Figure 10, the bold line corresponds to
the noise limit for a 200 dBtPa/m source, the thin line denotes the multiple scattering boundary.
In the region denoted ">10", the cutoff is at the Levine/Irish inner scale, and hence unchanging.
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the ones listed above were used.) The bold line shown corresponds to the noise limit for a 200
dBliPa/m source; the light solid line denotes the multiple scattering boundary. The result is that
for ranges greater than a few kilo meters and frequencies less than 10 kHz, small vertical scales
contribute little to the scintillation index. Note also that the smaller scales become less important
as the range (and hence cumulative s..attering) increases.

In the numerical simulations, the medium is treated as consisting of 5-correlated phase changing
screens that are statistically described by the TCF. The question, "Is it theoretically permissible to
represent the ocean statistics in this manner?" has been studied in additional research conducted
by Ewart and Kaczkowski (1990). They have studied medium models that are correlated in range,
versus those described by 8-correlated screens (i.e. a Markov process), Their research shows that
little difference exists in the acoustic field moments for the two descriptions. This result, when
considered with the observations presented in the previous paragraph on the effects of changing
the inner scale, allows us to simplify oceanographic modeling for simulating acoustics. This
simplification is incorporated into our discussion of dynamical modeling in the Summary section.

SUMMARY AND WHAT'S NEXT?

We have provided a brief tutorial on the connectivity between ocean stochastic modeling and
predictions of the moments of an acoustic wave propagating through such an ocean. In this
section we include a brief summary of our main points and mention desirable future directions for
research.

Summary
• Internal wave models (new and used), are vital for predicting the statistics of acoustic
propagation.

* Stochastic inverse methodology provides a tight check on proposed new models, when
sufficiently careful space/time acoustic observations are made simultaneously with
space/time oceanographic observations. The use of both oceanographic and acoustic
measurements in combination must be emphasized.
• The missing element in research is the availability of acoustic observations in depth/time,
where the medium correlation function is known.
• Numerical experiments, where dynamical models are used to define the index of
refraction field, may help us to understand stochastic inverse methods, BUT,
• Field experiments with sufficient space/time measurement bandwidth must be coupled
with acoustic measurements ----

- We must measure the complex acoustic field E (z, t) for several frequencies and
ranges.
- When a "new model" is available, a detailed experiment can be designed with

numerical modeling.

3-D Dynamical Modeling

We have stated emphatically that the lack of high quality data prevents us from testing the
stochastic inverse methodology on the range of space/time scales that are relevant to the



Acoustic Implications of a New Model

modeling goals of the 'Aha Huliko'a meeting. Using the insight we have gained from studying
modeling limits, we are collaborating with Kraig Winters and Eric D'Asaro (See their
contributions in this proceedings) to test the capabilities we have developed in theoretical
predictions and stochastic inverse methodology with their dynamic simulation modeling. The
proposed model, to be run on our Stardent Mini-Supercomputer, will have horizontal scales of 50
by 20 km in x and y respectively (x is the propagation direction) and 2000 m in the vertical. Its
corresponding resolution will be 20 m in the vertical and 333 m in the horizontal with a grid of
1283/4 cells. The model will be initialized in several ways and run with time steps spanning many
inertial periods. The resulting density fields will be the input to our PE propagation codes and
will provide simulated realizations of the acoustic field. This type of modeling is very important,
because it allows us to demonstrate the necessity (or lack thereof) of including dynamics in
acoustic modeling.

Realizations of 3-D plus time density fields can also be produced from any proposed model, and
used via Monte Carlo methods to test the stochastic inverse concepts discussed here. In verifying
acoustic scattering predictions, one can test the robustness of the predictions to relaxed
assumptions in the model, e.g., fully random phase versus dynamically consistent, and correlated
versus Markov medium representations. All of these issues are relevant to our computer-limited
ability to model acoustic propagation.

A Proposed Experiment

Eric D'Asaro has proposed an internal wave experiment designed to test many of the existing
ideas on the cascade of energy from low internal wave modes to higher modes. The experiment
would be conducted far from boundaries and sources of low mode internal wave energy. For
example an area south of a storm region could be used to study how a changing flux of low mode
internal wave energy "pumps" a local internal wave space/time spectrum. An extensive suite of
dynamic and scalar oceanographic measurements would be made over a long period of time in
order to develop an understanding of the linear and nonlinear processes involved. We would
propose that an acoustics experiment capable of measuring the complex field at many spatially
separated points be made an integral part of the overall measurement program. Many of the ideas
we have presented here could be implemented. By sensing such a large volume of the
experimental region, the acoustic measurements we envision would provide a severe constraint
on possible space/time models.
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INFERENCES OF GRAVITY WAVE PROCESSES FROM ATMOSPHERIC SPECTRA

David C. Fritts

Geophysical Institute, University of Alaska, Fairbanks, AK 99775-0800

ABSTRACT

Considerable information on the characteristics and variability of the atmospheric motion
spectrum has erierged in the last few years. As a result, we are developing a much better
understanding of the processes that maintain the spectral shape and account for spectral variability
and its effects. This paper will summarize briefly some of the recent atmospheric spectral
observations and their implications for gravity wave saturation processes, spectral shape, Doppler
shifting, momentum fluxes, filtering and anisotropy. Also discussed are the apparent similarities
and differences between the motion spectra in the atmosphere and the oceans.

INTRODUCTION

Gravity waves are now recognized by most researchers to account for the majority of the
mesoscale motion field in the lower and middle atmosphere. Because of their ubiquity and their
many effects, they have been the subject of considerable research efforts over the last few
decades. Unlike the oceans, where the role of gravity wave motions in momentum and energy
transports is at present uncertain, atmospheric gravity waves are now believed to be responsible
for much of the vertical coupling of momentum and energy in the atmosphere.

Much of our knowledge of gravity wave motions in the atmosphere has come from remote
sensing using ground-based radar or optical systems. Also available, however, has been a range of
in situ data obtained with balloon, aircraft, space shuttle, rocket, satellite and other
instrumentation. These data have yielded many insights into the structure and variability of the
atmospheric motion field. Radar and lidar systems have provided data on the temporal nature and
vertical structure of atmospheric motions at one location. High-resolution vertical profiles have
also been obtained with balloon- and rocket-borne systems, while data on the horizontal
variability and/or vertical structure of the motion, thermal, and constituent fields have been
provided by balloon, aircraft, space shuttle, and satellite instrument systems. Together, these data
provide an increasingly comprehensive picture of the processes controlling the atmospheric
gravity wave spectrum and its various effects.
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One intent of this paper is to summarize some of the more general implications of the diverse
spectral observations of atmospheric motions that are now available. A second objective is to note
some of the areas in which atmospheric and oceanic processes are likely to be similar and those
where we should expect to see disparities. Characteristics of and inferences drawn from vertical
wavenumber spectra at various levels in the atmosphere are presented in the following section.
The principal result here is that several processes are acting to control the amplitude of the
spectrum to a remarkable degree. We then examine the implications of frequency spectra of
horizontal and vertical motions for wave propagation, Doppler shifting, and wave field
anisotropy. Additional evidence of anisotropy, and of the extent to which gravity waves force the
larger-scale atmospheric circulation, is provided by momentum flux and divergence
measurements at a range of sites. Recent studies have also emphasized the scales at which these
fluxes are preferentially contained. We conclude with a discussion of the similarities and
differences of atmospheric and oceanic spectra and processes.

VERTICAL WAVENUMBER SPECTRA

Vertical wavenumber spectra of horizontal motions and density or temperature fluctuations
obtained during the last few years increasingly have been interpreted as evidence of gravity wave
saturation. Initially, it was argued by Dewan and Good (1986) and Smith et al. (1987) that linear
instabilities should dictate a saturated spectrum at large vertical wavenumbers with horizontal
velocity and fractional temperature spectra varying as - N2/6 m3 and N4/10 g2m3 . More recently,
other saturation mechanisms have been investigated and explanations of the saturated spectrum
offered based on nonlinear interactions and/or Doppler shifting (Dong and Yeh, 1988; Hines,
1988; Holloway, 1988; Dunkerton, 1989; Fritts, 1989; Fritts and Yuan, 1989a; Hines, 1991). In
all cases, however, these theories have predicted amplitudes and slopes largely consistent with
linear theory. This suggests that the implications of gravity wave saturation will be more
dependent on spectral character than on specific saturation processes.

At lower wavenumbers, vertical wavenumber spectra are expected to have a positive slope to
insure a finite vertical flux of wave action (VanZandt and Fritts, 1989). Consistent with the
increase in energy density (per unit mass) with height and the amplitude limits at large
wavenumbers, horizontal velocity spectra exhibit a dominant vertical wavenumber m, = 2X/,z,
that decreases with increasing height from - 3 rad/km in the troposphere and lower stratosphere
(Fritts and Chou, 1987; Fritts et al., 1988; Tsuda et al., 1989) to - 0.3 rad/km near the mesopause
(Smith et al., 1987; Wu and Widdel, 1989). The increase in energy density with height is
generally attributed to a preferential upward propagation of gravity wave energy and the
associated decrease in atmospheric density. Similar slopes and amplitudes were noted in
stratospheric temperature spectra (Fritts et al., 1988) obtained with high-resolution balloon
soundings. Lidar data, in contrast, yield spectra with similar slopes, but with amplitudes that
depart from those predicted by saturation theory in the middle stratosphere (Chanin and
Hauchecome, 1987; Kwon et al., 1990), due perhaps to the longer integration times inherent in
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the lidar profiles and a lack of sensitivity to motions near inertial frequencies which contain the
majority of the velocity and temperature variances.

A spectral form that appears to fit well the various observations is

4E m/m
E(m) r- 1+ (m/m.)4  '(1)

where E0 is the total spectral variance and m* is the characteristic vertical wavenumber
corresponding to the wavenumber of maximum spectral density in a variance content form. To be
consistent with the saturated spectral amplitudes estimated by Smith et al. (1987), this implies
JEo - nN2/24 m*2 and Eo = nN4/40 g2m* 2 for velocity and fractional temperature fluctuation spectra,
respectively.

A vertical wavenumber spectrum with the above characteristics has a number of implications for
atmospheric circulation and structure. First, a form given by Eq. (1) with a decrease of m*
consistent with observations implies a growth of wave energy at small wavenumbers that is less
than expected for conservative motions (Smith et al., 1987) and thus a continuous removal of
energy from motions at all vertical scales. This implies, in turn, smooth variations of wave energy
and momentum flux, and of their vertical divergences, with height and corresponding smooth
variation~s in wave drag and induced diffusion. Because the saturated spectral amplitude depends
on the buoyancy frequency, N, we also anticipate additional, or enhanced, saturation and effects
near regions where N2 increases with height. "l'his implies increased wave dissipation and drag
above the tropopause and the summer mesopause, in particular, that can be estimated based on the
observed spectral character (VanZandt and Fritts, 1989). These effects are expected to be
especially important at greater heights where the wave energy and momentum flux divergences
have greater influences.

Temporal variations of the vertical wavenumber spectrum provide evidence of isolated
components of the motion field and thus may suggest the processes primarily responsible for
wave saturation in the atmosphere. Shown in Figure 1 are series of vertical wavenumber spectra
in variance content form in the troposphere and lower stratosphere at I-h intervals obtained with
the MU radar in Japan (Fritts et al., 1988). The spectra reveal good consistency with height and
significant local departures from the canonical form of the saturated vertical wavenumber
spectrum. Of particular interest, however, are the persistent features both near the maxima and at
higher vertical wavenumbers that suggest long-lived components of the motion spectrum
propagating and dissipating in superposition, but without interaction, with other spectral
components. This seems to imply a dissipation process that relies on local wave field instabilities
due to superposed wave amplitudes rather than strong wave-wave interactions and spectral energy
transfers.

Additional evidence of wave instability and turbulence generation is provided by measurements
of spectral characteristics at smaller scales. One example of a vertical wavenumber spectrum of
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neutral density fluctuations inferred with a rocket-borne positive ion probe (PIP) during the
MAC/EPSILON experiment is shown in Figure 2 and exhibits three distinct spectral ranges (Blix
et al., 1990). At scales larger than - 300 m the spectrum has a slope near -3, consistent with the
large wavenumber range expected for saturated gravity wave motions. From scales of - 5 - 300
m, however, the spectrum has a slope near -5/3, suggesting inertial range turbulence and wave
energy dissipation. Finally, at scales less than - 5 m, the spectrum appears to be consistent with a

20 a b

18 -

35--

16-_ ___ -

30 --

E25 - - -

22

S0

-12 - -- - - -

Z 8 -

15

4O 0I-E I 102joi 1-3 1-

WAVENUMBER (CYC/M) WAVENUMBER (CYC/M)

Figure 1. Hourly area-preserving spectra of northward radial velocity for (a) 5 - 13 and (b) 13 -
20.5 km heights with time increasing upward (Fritts et al., 1988). Note the consistency and
persistence of spectral features in time and the departures from canonical form.
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viscous subrange. Spectra obtained on other rocket flights provide similar views of small-scale
dynamics and imply that these spectral features are persistent components of the motion field.
These spectra imply a nearly continuous transfer of energy from gravity wave motions through
inertial range turbulence to viscous scales. Estimates of the energy dissipation rates may be
obtained from the transition scales and from the spectral amplitude within the inertial range,
leading to estimates of - 0.01 W/m2 in the middle and upper mesosphere. Estimates using radar
techniques suggest comparable values, with enhancements near the summer mesopause that are
consistent with predictions of saturation theory.
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Figure 2. Spectrum of density fluctuations obtained with a positive ion probe showing three
spectra ranges between scales of - 3 m and 8 km (Blix et al., 1990). These suggest ranges
consistent with gravity wave saturation, inertial range turbulence, and viscous dissipation.

FREQUENCY SPECTRA OF HORIZONTAL AND VERTICAL MOTIONS

Measurements of frequency spectra using various techniques have revealed the general
characteristics and variability of the motion field under a variety of conditions. Frequency spectra
obtained using atmospheric radars have provided the greatest diversity of observations and have
shown the mean frequency spectrum of horizontal motions to exhibit an amplitude growth with
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increasing height and clear tidal peaks at upper levels. At frequencies greater than tidal
frequencies, most observations suggest a slope nar -5/3 (Balsley and Caner, 1982; Vincent,
1984) that is nearly invariant with height and mean atmospheric motions. Observations of
frequency spectra of vertical motions are more varied, with slopes that are slightly positive under
weak wind conditions and which become increasingly negative as mean winds increase.
Examples of vertical velocity spectra under weak and strong wind conditions are shown for
reference in Figure 3.
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Figure 3. Vertical velocity frequency spectra during the MAC/SINE campaign (Fritts et al.,
1990a). Upper plot is for light winds and exhibits a peak near N. Lower plot is a mean spectrum.
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Assuming that the frequency and wavenumber spectra of gravity wave motions are separable, for
which there is some evidence, and an intrinsic frequency spectrum (relative to the medium) of
horizontal motions of the form w'P, with p - 5/3, we expect the intrinsic frequency spectrum of
vertical velocities to vary as w2-p. These expectations are in agreement with observations under
light wind conditions, but depart significantly when mean horizontal motions are large.

Departures of the observed spectra from the anticipated forms of intrinsic frequency spectra may
arise for several reasons. As noted in the previous section, vertical wavenumber spectra exhibit
substantial departures from the mean spectral form and suggest that similar variability might be
expected to occur among frequency spectra as well. But this explanation is unable to account for
departures of mean spectra from a relationship consistent with the gravity wave dispersion
relation. Instead, these departures appear to be due to the differing effects of Doppler shifting on
the frequency spectra of horizontal and vertical motions (Fritts and VanZandt, 1987).

The importance of Doppler shifting depends on 1) the relative motion of the intrinsic and
observed frames, 2) the horizontal wavenumbers and phase speeds of the motions containing the
majority of the spectral variance, and 3) the direction of wave propagation relative to the mean
motion. If the mean motion is small compared to characteristic phase speeds or intrinsic
frequencies are small, as is generally the case for those gravity waves accounting for most of the
horizontal velocity variance, then Doppler shifting effects are relatively minor and wave
propagation directions are unimportant. If, however, the mean motion is large compared to phase
speeds containing the velocity variance or intrinsic frequencies are high, then there is a large
potential for Doppler shifting of velocity variance throughout the spectrum and wave propagation
directions are very important.

More simply stated, it is easier to Doppler shift velocity variance from high to low frequencies
than from low to high frequencies (a mean flow comparable to the intrinsic phase speeds can
Doppler shift high-frequency variance to o - 0, but not vice versa). This implies much greater
differences in the intrinsic and observed frequency spectra for vertical motions (primarily at high
frequencies) than for horizontal motions (primarily at low frequencies) and suggests that vertical
velocity spectra will be more sensitive to such effects as a result. The effects of Doppler shifting
on two-dimensional, symmetric, idealized, intrinsic horizontal and vertical velocity spectra (with
p = 2) are illustrated in Figure 4 for various values of P = u/c*, where u is the relative motion, c*
= N/m*, and m* is as defined with Eq. (1). These results demonstrate that the slopes of observed
symmetric horizontal velocity spectra remain nearly constant at high frequencies, even for large
Pi, while observed vertical velocity spectra may exhibit significant changes in slope and amplitude
at small P.

The significant changes anticipated theoretically in observed vertical velocity spectra under
different Doppler-shifting conditions provide a convenient test of these simple spectra effects.
Such tests have been performed by Vincent and Eckermann (1990), VanZandt et al. (1990), and
Fritts and Wang (1991) and reveal a remarkable consistency with the theory, suggesting that
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Doppler-shifting effects do indeed account for much of the observed spectral variability. Vincent
and Eckermann (1990) noted that Doppler-shifting appeared to explain the increase in wave
variance parallel to the local flow associated with frontal circulations and VanZandt et al. (1990)
found good agreement between model predictions and observed, symmetric spectra in the lower
atmosphere. At greater heights, Fritts and Wang (1991) found observed vertical velocity spectra
to provide evidence of Doppler shifting, wave field anisotropy, and the form of the vertical
wavenumber spectrum. These results suggest that observed motions are largely consistent with
gravity wave theory and differ from the predictions of geostrophic or stratified turbulence, which
has been offered as an alternative explanation of the motion field (Gage, 1979; Lilly, 1983).
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Figure 4. Effects of Doppler shifting on two-dimensional isotropic horizontal and vertical velocity
spectra (Fritts and VanZandt, 1987). See text for parameters.
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The observed, and inferred intrinsic, frequency spectra also have implications for the dominant
transport processes within the gravity wave field. As noted by Fritts (1984), the forms of the
observed frequency spectra of horizontal and vertical velocities imply that wave energy and
momentum fluxes are accomplished primarily by motions with high intrinsic frequencies. While
horizontal velocity variance (and thus total wave energy) resides mainly at low intrinsic
frequencies, o - f, momentum and energy fluxes depend on the speed of vertical propagation,
causing the major fluxes to be associated with motions with intrinsic periods < 1 h. These
motions were estimated to provide - 70 % of gravity wave transports by Fritts (1984).
Subsequent observations at a number of sites have served to confirm these estimates at lower and
upper levels (Fritts and Vincen, 1987; Reid and Vincent, 1987; Reid et al., 1988; Fritts and
Yuan, 1989b; Fritts et al,, 1990t; Wang and Fritts, 1990). More will be said about the spectral
character of gravity wave momentum fluxes in the following section.

MOMENTUM FLUX SPECTRA

Relative to velocity spectra, there are very few observational data at present on the spectral
character of momentum fluxes. Those that are available, nevertheless, serve to confirm our
expeciations based on velocity spectra, integrated momentum flux measurements, and theory.

One example of the observed freque.ncy spectrum of vertically averaged westward momentum
flux computed from the difference of averaged radial velocity spectra is shown in Figure 5 in
standard and flux content form (Fritts et al., 1990b). This spectrum suggests a dominance of the
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Figure 5. Frequency spectrum of vertically averaged westward momentum flux obtained with the
MU radar (Fritts et al., 1990b) in (a) standard anti (b) flux content form.
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total momentum flux by low-frequency motions. As noted by Fritts et al. (1990b), however, the
disparate radial velocity variances imply high intrinsic frequencies despite the small observed
frequencies and thus wave motions and momentum fluxes largely consistent with orographic
excitation. This view is supported as well by the temporal variability of the vertically averaged
westward momentum flux observed in that data set.

It is not possible to obtain an accurate estimate of the intrinsic frequencies accounting for a
majority of momentum fluxes at one site without knowledge of the horizontal scales and/or the
relative anisotropy of the motion field. Such an estimate is possible, however, with herizontal
mtsurements of wave activity and covariances in circumstances in which wave phase speeds
may be reasonably approximated, This occurs when we expect the predominant wave motions to
be due to orography, as in the observations of variance enhancements associated with orography
by Nastrom and Fritts (1991). The momentum flux spectra (or cospectra of u and w) obtained
from four aircraft flights during the the Global Atmospheric Sampling Program (GASP) are
shown in standard and variance content form in Figure 6. These reveal, consistent with the
inferences drawn from the MU radar data, that th'. majority of the momentum flux is due to
motions with small horizontal scales and relati ely high intrinsic frequencies. With the major
contributions at horizontal scales of - 20 - 60 km and mean flows of - 20 m/s, we infer
characteri3tic intrinsic periods of < I h. These results are also in agreement with momentum flux
observations at greater heights for which orographic influences are likely to be less pronounced
(Fritts and Vincent, 1981; Reid and Vincent, 1987; Fritts and Yuan, 1989b; Reid et al., 1988;
Wang and Fritts, 1990).

The occurrence of the primary gravity wave momentum fluxes at small horizontal scales and high
intrinsic frequencies has some important implications for the forcing of the large-scale
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Figure 6. Momentum flux versus wavenumber in (a) standard and (b) flux content form (Nastrom
and Fritts, 1991). Integrated values are negative with the major contributions at < 100 km scales.
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atmospheric circulation and structure. Because such gravity waves have relatively steep
propagation paths and the sources of such motions are often episodic and highly localized (Fritts
and Nastrom, 1991), we might expect that the forc.ir of the mean state accompanying wave
dissipation will also have similar attributes. This suggests that the response of the middle
atmosphere to gravity wave excitation at and propagation up from lower levels will reflect the
source and filtering conditions in place at that site, with horizontal coupling over large distances
playing a much smaller role. These effects are particularly important in assessing the role of
gravity wave forcing of the middle atmosphere because of the large mean fluxes that have been
observed and the significant influences on the large-scale circulation and structure that are
implied.

COMPARISON OF ATMOSPHERIC AND OCEANIC SPECTRAL IMPLICATIONS

Gravity wave spectra in the atmosphere and oceans share many features due to common source,
propagation, and dissipation processes. There are also, however, some important differences
between atmospheric and oceanic spectra that arise due to quantitatively different source
distributions, wave-wave and boundary interactions, and characteristics of the mean wave
environment.

Tidal and inertial-scale forcing of the oceanic internal wave spectrum by surface winds and
currents over orographic features acts to energize near-inertial frequencies and results in a
pronounced peak in wave energy near (o - f. These motions persist for long times, may propagate
large distances, and interact with other components of the spectrum on (arguably) slow time
scales, resulting in an oceanic spectrum in the frequency and wavenumbers domains that is nearly
universal in shape and amplitude. Because dissipation processes are slow away from boundaries
and the wave spectrum is confined between two largely reflecting surfaces, there is also a
tendency for the spectrum to be nearly vertically symmetrized and for net vertical fluxes of
energy and momentum to be small. Under these conditions, the motion field can be conveniently
expressed using a modal description.

Atmospheric gravity waves, in contrast, are excited by a wide range of source processes that
appear to contribute wave energy predominantly at intermediate and high intrinsic frequencies.
These include convective and frontal processes, orography, and wind shear and lead to
atmospheric frequency spectra that do not include an inertial spike characteristic of the oceanic
spectra. This greater fraction of total wave energy at higher frequencies in the atmosphere implies
several important differences in atmospheric and oceanic spectra.

Wave motions at higher intrinsic frequencies propagate vertically more rapidly than low-
frequency motions at comparable vertical scales. This results in larger vertical fluxes of energy
and momentum and greater flux divergences (and associated energy dissipation and body forces)
in regions of wave dissipation than would accompany lower-frequency motions. The effects of
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Clese transports are enhanced in the atmosphere at heights above the primary wave sources due to
the exponential decay of density with height, which causes wave amplitudes to increase
approximately exponentially with height and energy and momentum fluxes and their divergences
to increase relative to background levels. Energy dissipation rates (measured relative to local
energy densities) in the stratosphere and mesosphere are consequently much larger than in the
ocean and imply dissipation time scales for gravity waves of - 10 - 100 times less than in the
oceans (- hours - 10's of hours rather than ~ 10's of days). This likewise suggests differences in
the processes acting to remove energy from the wave spectrum, requiring fast, energetic
dissipation at increasing heights in the atmosphere (primarily local convective instability) and
permitting slower and/or more systematic energy transfers (primarily dynamical instability or
wave-wave interactions) at lower levels of the atmosphere and in the oceans. Despite the different
physical processes suggested to be responsible for wave dissipation in the oceans and at various
heights in the atmosphere, all those processes considered viable lead to comparable limits on
wave amplitudes and corresponding saturated wavenumber spectra. Similar arguments imply that
gravity wave momentum fluxes play a more significant role in forcing the large-scale circulation
and structure in the middle and upper atmosphere than in the oceans.

Another difference between atmospheric and oceanic spectra that is due in part to the distribution
of wave energy with frequency and in part to differences in the wave environment is the relatively
greater influence of Doppler shifting in observed spectra of atmospheric motions. As noted
previously, motions with intrinsic frequencies that are high are easily Doppler shifted to observed
frequencies that are low, while low-frequency motions cannot be shifted to o',served frequencies
that are high. Additionally, typical mean motions of the atmosphere ate lrrgr.r ihan characteristic
wave phase speeds, particularly at lower levels, whereas oceanit wave phase speeds are generally
greater than mean currents. This results in a much greater range of obseved frequency spectra,
especially of vertical velocities because of their greater sensitivity (their greater energy
concentration at 0)- N), in the atmosphere than in the oceans. The larger characteristic anisotropy
of the atmospheric gravity wave field (due to discrete, high-frequency sources and greater
departures from iertical symmetry) also contributes to variations of frequency spectra of
horizontal and vertical velocities and permits inferences of wave sources, filtering, and effects
that appear to be more challenging in the oceans.

In summary, the physical processes acting to excite, mould, and dissipate the gravity wave spectra
in the atmosphere and oceans have some similarities and some important differences. The
similarities account, broadly, fo,' the qualitative agreement in mean observed frequency and
wavenumber spectra in the two systems (spectral slopes and apparent saturation limits). But there
are large differences in the potential for energy and momentum transports, dissipation processes,
anisotropy, and influences on the mean state due to the unbounded and exponentially decreasing
mean density in the atmosphere, the vertically contained and more vertically uniform mean
structure of the oceans, and the very different intrinsic frequencies at which primary wave
excitation occurs in the atmosphere and oceans.
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ABSTRACT

It appeared some years ago that a number of theoretical and observed features of the
internal wave field can be reconciled with a diapycnal diffusivity of no more than about
10- ' m2s- 1 . This "paradigm" is re-examined here, with particular attention to the
arguments concerning the alleged universality of internal waves in space and time. A key

question concerns the influence of nonlinear interactions on horizontal spreading, but the
simple picture still seems reasonable for the main thermocline. However, there are clearly
significant departures from it in various regions, such as the upper ocean or close to the
sea floor. The influence of a sloping bottom on both diapycnal fluxes and the velocity
boundary condition for low frequency flows is emphasized; some general theoretical results
are presente" ut there is a need for further observations. Finally, a simple model for the
mixing by, and decay of, an interfacial solitary wave is summarised.

1. INTRODUCTION

In January 1984 1 had the pleasure of attending the Third 'Aha Huliko'a Hawaiian Winter
Workshop on "Internal Gravity Waves and Small-Scale Turbulence". Figure 1 shows my
attempt then to present a "zeroth order view" of the effect of internal waves on the ocean
interior, summarising and perhaps oversimplifying the theoretical and observational
progress made by many people. Seven years later it seems worthwhile to ask whether this
paradigm should be abandoned or merely qualified.

Section 2 thus briefly reviews and extends the arguments leading to Figure 1, pointing out
their weaknesses, but suggesting that the synthesis may still be appropriate for the main
thermocline. It probably is not relevant, however, near the sea surface or sea floor. The
role of the bottom boundary in determining the spectral shape of the internal wave
spectrum is discussed briefly in Section 3. Diapycnal mixing by shear instability of bottom
reflected internal waves, and the way in which this may control the velocity boundary
condition for low frequency flows, is also reviewed; the need for more observational work
near sloping boundaries is emphasized. Returning to the upper ocean, Section 4 briefly
presents a simple model for the shear-induced decay of an internal solitary wave. Section 5
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Figure 1: Schematic of a zeroth order view of various features of internal waves and turbu-
lence that seem to be consistent with a diapycnal diffusivity of about 10- 5 m2 s- 1. (From
Garrett, 1984).

is a personal impression of topics that need to be emphasized in future research.

2. THE PARADIGM

The purpose of Figure 1 was to demonstrate that a number of theoretical and
observational properties of internal gravity waves in the main thermocline are compatible
with a vertical eddy diffusivity there of no more than about 10- 5 m2 s- 1 . Specifically:

(i) The rate of energy transfer through a typical internal wave spectrum has been
estimated by McComas and Miller (1981b) using weak interaction theory aud by Hlenyey
et al. (1986) with a theory based on ray tracing. As pointed out by Gregg (1989), the two
theories give essentially the same form E2N2 for the functional dependence of the energy
flux on buoyancy frequency N and total internal wave E, but differ by a factor of nearly 7.
Both theories depend on assumptions of limited validity; it remains to be established
whether they are cowplementary, by applying in different regions of wavenumber-
frequency space, and whether the factor of 7 discrepancy is aan artifact of different, but
hidden, assumptions.

The calculations of McComas and MiUller (1981b) have been criticised for violating the
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assumption of weak nonlinearity (Holloway, 1980), but the assumption does seem to be
valid for the regions of the spectrum at low frequency and low vertical wavenumber which,
after all, contain most of the internal wave energy. Thus, provided that these regions are
not affected by back fluxes from the much less energetic regions where the assumption
breaks down, it does seem reasonable to accept the McComas and Miller (1981b)
estimates of the energy transfer to high wavenumber and ultimately to dissipation e. For
typical spectral levels, and with the increase in potential energy of the basic state being 20
to 25% of c (Osborn, 1980; Oakey, 1982), the McComas and Mfiller (1981b) results then
lead to a depth-independent Kv of less than 2 x 10- 5 m2s- I ( following Gregg (1989) in
allowing for the energy transfer from low modes by both induced diffusion and parametric
subharmonic instability).

(ii) Gregg's (1989) comparison of direct measurements of c at various locations and depths
led him to adopt a parameterisation for c similar in form to those of McComas and Miller
(1981b) and Henyey et al. (1986), but a factor of about 3 smaller than obtained by the
former and a factor of 2 more than obtained by the latter. This in turn led to Kv less
than about 5 x 10- 6 m2S- I for typical internal wave energy levels.

(iii) For Kv = 10- 5 m2 s- 1 , with c = 4 to 5KvN 2 per unit mass and with an e-folding
depth of 1,300 m for N, the typical vertically integrated internal wave energy level of
about 4,000 Jm- 2 is dissipated or converted to mean potential energy in about 40 to 50
days. A decay time of this order or even longer is compatible with the rather small
variability in internal wave energy levels in space or time. If, for example, we think of the
internal wave energy level E in an area as being governed by the equation

dE/dt + E/T = F (1)

where r is the decay time and F some exterior forcing, then the response to

F = Fo + F coswt is

E = r[F + FI(1 + 2 T 2)-1/ 2 cosw(t - to)] (2)

where the time lag to = w-1 tan-1 wr. This may have some relevance to the finding by
Briscoe and Weller (1984) and Briscoe (1984) of a lag of 2 to 3 months between internal
wave energy levels and seasonal variations in wind stress. Taking to = 75 days and
w = 27r/365 days implies r = 200 days, somewhat longer than the 50 days or so (requiring
to = 40 days) corresponding to Kv = 10- 5 m2s- 1 but not much more than the 100 days
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(requiring to = 60 days) or more associated with Gregg's (1989) value of less than

5 x 10- 6 m2s-1 for Kv.

Equation (2) also implies that the variation of E about its mean should be less than the
variation of the forcing by a factor (1 + w2 r 2 ) - 1/2 . For r = 50,100,200 days this factor is
0.76, 0.52, 0.28. Briscoe's (1984) North Atlantic data (his Figures 6b and 8) do suggest
that the internal wave energy has less variation than the monthly average wind stress
which is assumed to be the driving mechanism; a factor of about 0.4 seems appropriate,

corresponding to a decay time of a bit more than 100 days.

Any further discussion of this should be regarded as over-interpretation, but it does seem
possible that the time lag and variability of the internal wave energy level is associated
with a decay time of about 100 days. Briscoe (1984) suggested that the lag represents the
time for wind-forced mesoscale eddies to pass on their energy to the internal wave field,

but has later also recognised the connection with the decay time of the internal wave
spectrum (Mel Briscoe, personal communication).

It has also been suggested in the past that the tendency for internal wave energy levels to
be similar from place to place, in spite of spatially variable forcing, is a consequence of the
rather long decay time which permits significant horizontal spreading of a patch of high
energy. An important unpublished paper by Cox and Johnson (1978) discussed the way in
which the spread of a patch of high internal wave energy is a diffusive process, with a
horizontal diffusivity KH proportional to the time for horizontal anisotropy to be removed
by wave-wave interactions. An appropriate model in this situation, for forcing that varies
in strength with wavenumber I in the north-south direction y, is

KHd2E/dy2 - E/t + Fo + F cosly = 0, (3)

with r the internal wave decay time as before. The response is

E = r[Fo + (1 + KHT12 )- F1 cosly] (4)

so that variations in forcing are smeared out if Ktrl2 > 1.

For Cox and Johnson's (1978) estimate of 1.4 x 104 m2 s- 1 for KH, taking r = 100 days
and with I = 1.9 x 10- 6 m- 1 , as for the 300 north-south wavelength of wind stress in the
Atlantic (Briscoe, 1984), the factor (1 + KHtri) - ' = 0.70. Thus significant variations in
E, as reported by Briscoe (1984), should be observed, but this conclusion is highly
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sensitive to KH and hence to the time for horizontal anisotropy to be removed. Cox and
Johnson (1978) took this to be 72 hours for the frequency of 1.3f contributing the most to
their integral expression for KR, but further analysis is long overdue.

It is also quite likely that it is dangerous to lump together all the frequencies in the
inertio-internal wave spectrum. The seasonal variations reported by Briscoe and Weller
(1984) and Briscoe (1984) were for high frequency internal waves (either w > 1.15f or
w > 0.1 cph in different analyses); the inertial band energy at the LOTUS site discussed
by Briscoe and Weller (1984) showed a more complicated time dependence, with

occasional bursts of high energy.

Spatially, Fu (1981) found that the inertial peak in the abyssal North Atlantic over
smooth topography scaled as if it had odiginated as super-inertial energy at a lower
latitude (though elsewhere it had a component due to local generation). This seems to
imply that the wave does not lose much of its energy as it travels to its turning latitude, is
internally reflected and travels back equatorward again. Taking y northward, with y = 0
at the latitude where f = w, then f = w + fly with P = wR 1 cot 0, R being the earth's
radius and 0 the latitude. A wave of frequency w and horizontal wave number then
proceeds towards its turning latitude at a speed Ow/Ol, where the dispersion relation near
the inertial frequency f is approximately

(w2 - f 2)1/2 = (k2 + 12)1/2cj, ci = Nob(jr) - 1  (5)

for modenumber j in an ocean with a buoyancy frequency that is No near the surface and

decreases exponentially downwards with a scale depth b (e.g. Garrett and Munk, 1972).
Hence, within the limits of ray tracing,

dy/dt = Ow/Ol z (20/w)'12 cj(-y + yo) 1/ 2  (6)

where yo = -cjk 2(2w#)- 1 defines the turning latitude for east-west wavenumber k.
Assuming that this WKB approximation is adequate to estimate the travel time T from
some position -Y to -yo, then

T = [2R(Y - yo) tan 4]1/ 2cT-1. (7)

If we take Y - yo = 1,000 kin, 0 = 450, No = 5.2 x 10- 3 s- 1 and b = 1,300 m, then

T = 20j days. This suggests that any processes that would tend to remove the inertial
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peak in the spectrum cannot do so in less than several tens of days.

On the other hand, as also recognised by Eric Kunze (personal communication), the

latitudinal scaling of spectra is a two-way process; perhaps some of the energy at

frequencies above f originates as inertial energy at a more poleward location. In fact, the

higher-than-WKB inertial peak found by Fu (1981)in some locations suggests that the

extra energy must be lost rather quickly.

To summarise this discussion:

(a) The temporal variability of the typical high frequency internal wave field suggests a

decay time of order 100 days, with Kv no more than 10- 5 m2s- 1.

(b) Spatial variability of annual average high frequency energy levels can occur even if

the decay time of the energy is 100 days or so, though this conclusion is strongly

dependent on the poorly-known rate at which horizontal anisotropy is removed from

a spectrum.

(c) To the extent to which the inertial peak is a latitudinal turning point effect, it also

seems to imply a lifetime of several tens of days. However, regions with more
elevated peaks must lose their energy in a time less than this.

(iv) The last main feature of Figure 1 concerns the kinematics of breaking waves. Garrett
(1984) argued that typically observed shear spectra in the ocean would lead to shear

instability and overturning on a vertical scale of order 1 m (as typically observed; e.g.

Gregg, 1989) and that, if mixing events occur no more frequently than shear maxima, then

again K, is no more than about 10- 5 m2 s- 1 . These arguments seem as valid now as they
did in 1984, and it does seem appropriate to point out that the estimate of the vertical

scale was based on integral properties of the whole shear spectrum rather than on the

vertical wavenumber of some particular kink in the spectrum!

In conclusion, to the extent to which Figure 1 represents a paradigm, it still seems

reasonably valid for the ocean interior away from the surface or bottom topography where
bursts of inertial energy may lead to a local increase in KV. As before, though, it largely

remains as a reminder of some of the different conceptual elements which need to be
considered in developing any unified picture of the mixing produced by internal waves. It

must also be remembered that processes other than internal wave breaking can lead to

diapycnal mixing.
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3. THE ROLE OF THE BOTTOM BOUNDARY

3.1 Effect on the Spectral Shape.

Most discussions of the internal wave wavenumber-frequency spectrum assume that it is
determined by some combination of generation (most likely at the sea surface by wind)
and nonlinear interaction in the ocean interior. Calculations by Eriksen (1.982),
Rubenstein (1988), Garrett and Gilbert (1988) and Xu (1990), however, show that
reflection oif bottom topography can scatter energy to higher wavenumber (though the
frequency of each wave is unchanged). Thus waves which can reach the sea floor in a time
short compared with their interaction time may have their energy scattered to higher
wavenumbers, at the same frequency, sooner than they lose energy to other frequencies

and wavenumbers by nonlinear interactions.

The vertical component of the group velocity of a wave of frequency w and vertical
wavenumber m is

Cgz = W NM (4j Lm) (8)

m for w N (9)

with m c- jirN(bNo)- 1 in an ocean with an exponential N profile of scale height b (Munk,

1981), where j is the mode number. If b is significantly less than the ocean depth, the
vertical travel time of waves with frequency less than N at the bottom is then
irwj(w2 - f 2)-l, or irjw- 1 away from f.

Now McComas and Miller (1981a, b) showed that, for a typical internal wdve spectrum,
the time scale for parametric subharmonic instability to drain energy from low modes with
w > 2f is given by (0.27EmmN- 2)-w - 1 where m. is the vertical wavenumber

bandwidth. Taking m = jirN(bNo)- 1, m. = j.7rN(bNo)- 1, j. = 3, No = 5 x 10- 3 s- 1 ,

b = 1300 m and E = 27r x 1O-b 2 NON, this time scale becomes 2 x 103(No/N)j-'w - 1.

Ignoring the depth dependence here by taking N = No, we see that this interaction time is
greater than the vertical travel time 7rjw-1 if j < 25.

Thus for the energetic low modes at frequencies greater than 2f, interactions with bottom
topography might be as significant as interactions with other waves in the water column.
Conceivably the tendency for non-inertial waves to have a less red vertical wavenumber
spectrum than inertial waves (Tom Sanford, this volume) may reflect this, although such a
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Figure 2: Definition sketch for mixing near a sloping boundary.

tendency may also be a consequence of nonlinear wave interactions (McComas and Miller,
1981a).

3.2 Mixing by Internal Waves Breaking Near a Slope

Figure 2 presents a schematic of a plane bottom slope at which internal waves are
reflected, mainly into shorter vertical wavelengths with higher energy (e.g. Eriksen, 1982).
This may well lead to shear instability and mixing close to the boundary (Eriksen, 1985;
Garrett and Gilbert, 1988), though less so in concave regions (Gilbert and Garrett, 1989).
It is assumed that the subsequent eddy fluxes of momentum and buoyancy can be

represented by eddy viscosity and diffusivity profiles v(z), K(z) as functions of the
bottom-normal coordinate z. (This does not assume that a mixing length theory is v id;
v and r are the eddy fluxes divided by the mean gradients). The mean buoyancy B(z) is
reduced near the boundary by the mixing, but OB/Oz -* N2 cos 0 as z -* oo with N2 the
constant interior stratification. In the upslope direction OB/Oy = N2 sin 0 for all z as the
problem is assumed independent of y to lowest order.

The physics and mathematics of this boundary mixing problem are discussed by Phillips
et al. (1986), Thorpe (1987) and Garrett (1990) amongst others. Here I wish merely to
draw attention to some key factors that suggest the need and opportunities for
observational work in this region.

Garrett (1990) showed that the vertical buoyancy flux is the value fo K(z)N 2dz/ sin 0
that it would take if the stratification was unchanged by the mixing, multiplied by an
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"effectiveness"

=/00 (Z[n2o+ (OB/oz)2 2 00 ~z(0I- rc(z) sin20 \N CoO os2  dz r dz (10)

This is 1 if OB/Oz - N2 cos B throughout the boundary layer but is reduced if

OB/Dz < N2 cos 0. Due to secondary circulation the reduction factor in the second term

in (10) is the square of what it would be due to reduced stratification alone. Now if vo, Ko

axe the eddy coefficients close to the boundary, then DB/Oz is very small over a thickness

of order hmixed where

(2 N sin2  -1/4
hmixed + ) ( V1

= hEkmnn(I + S Pr)- 1/ 4 . (12)

Here hEkman = (Volt)1/2 is an Ekman depth, S = N 2 sin 2 0/f 2 is the Burger number

based on the ocean interior stratification and the bottom slope and Pr = Vo[/X is the

eddy Prandtl number close to the boundary.

If significant mixing dies away outside a boundary layer of thickness approximately

hmixed, then the boundary mixing 3ffectiveness from (10) is small since 9B/Dz is small

where K is large and vice versa. If, however, vigorous mixing extends well into the region

above hmixed, where buoyancy driven flows ca,. 1 estore tic stratification, then I can be

significant. This may be the case for internal wave breaking. The stratification is, of

course, tied to the values of v(z), K(z). Garrett (199,) shows that if v(z), K(z) fall off to

very small values over a distance much greater than hixed, but assuming

v/K = Pr =constant for simplicity, then, for zhmixed,

DB/Oz c, N 2 cos 0 ( )S Pr (13)

The nature of this region is that both the thermal wind equation for the along-slope flow

and an advective (upslope)/diffusive (bottom-normal) balance for buoyancy are satisfied.

For this solution, (10) gives

SPr 2 (14)
14S Pr)

I A_1 S-r ()
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so that the mixing is particularly effective if S Pr is not small.

3.3 The Alongslope Flow

Steady state boundary mixing theories also lead to formulae for the alongslope mean flow
U(z). For arbitrary profiles of v(z), x(z) it can be shown (Garrett, 1990) that

U(z)= fcot6[i, - re(OB/Oz)IN 2 cosOlv-zdz (15)

where r.. is the (small) value of r as z -- oo. The bottom-normal buoyancy gradient

OB/8z, which tends to N2 cosO as z -- oc, is, of course, part of the solution. For

Pr = v(z)/n(z) = constant and with mixing, as before, extending over a distance H from

the boundary much greater than hmixed, (15) shows that as z -- oo, U(z) - U. given by

U.o -- fH cot# l + S Pr) " (16)

As argued by MacCready and Rhines (1991) and Garrett (1991), it is this

downwelling-favourable alongslope flow that becomes the boundary condition for the

ocean interior velocity and very slowly diffuses into the interior.

These steady state solutions for the density stratification, mixing effectiveness and

alongslope flow will undoubtedly turn out to be a gross oversimplification of events

occurring in the real ocean. They do, however, draw attention to the need for

measurements of eddy momentum fluxes as well as eddy buoyancy fluxes near the sloping

sea floor. An observational program on a sloping bottom, using acoustic doppler current

profilers to measure Reynold's stresses with the techniques described by Plueddemann
(1987) and Lohrmann et al. (1990), could be very rewarding.

4. A SIMPLE MODEL FOR THE DECAY OF AN INTERFACIAL SOLITARY WAVE

Much of the study of internal waves has been concerned with their generation, interaction

and dissipation LA the open ocean. They also exist, however, in the shallower water of

continental shelves, where they may have very different wavenumber/frequency spectra

and have significantly different behaviour and effects.

In particular, near-surface solitary waves, usually originating from nonlinear internal tides

at the shelf break, are a rather common feature of stratified continental shelf waters and

also occur in the deep ocean (e.g. Ostrovsky and Stepanyants, 1989). In any location they

provide a possible mechanism for vertical mixing.
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Figure 3: Schematic of an internal solitary wave in a two layer ocean with a thin interface.

In this section I summarise the simple criteria for mixing, and associated solitary wave

decay, derived by Bogucki and Garrett (1991) for a fluid with two homogeneous layers

separated by a thin interface. The situation envisaged is sketched in Figure 3; layers with

thicknesses H1, HI2 and densities p - Ap and p are separated by a thin interface of

thickness h (< H1, H2). A solitary wave of amplitude a generates currents ul, u2 in the

two layers.

In a frame of reference moving with the wave speed c, continuity in the two layers requires

(c-u )(H + a)= cH, (c-U 2 )(H2 -a) = cH 2  (17)

u1 = ca(H + a) -1 , U2 = -ca(H 2 - a) -1  (18)

if the horizontal length scale L of the solitary wave is much greater than H1 and H2 . The
Richardson number in the interface is then

Ri = g'h(ul - u2)- 2 , g' = gAp/p (19)

= g'h(H1 + a)2(H2 - a) 2 c-2 (Hi + 2 )-2a - 2 .  (20)

In the simplest situation, where H2 > H and a < H1, we have c2 " g'HI and

Ri hHi/a2 . (21)
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x

Figure 4: The internal solitary wave is progressing in the x direction and triggers shear
instability at some point on the forward face. The interface quitkly thickens and keeps
thickening until the wave's maximum displacement is reached.

Hence Ri < I for instability requires

a > 2(hHi )1 /2. (22)

This simple criterion for instability, that the solitary wave amplitude should be greater
than twice the geometric mean of upper layer and interface thicknesses, also applies if we
relax the assumption that L > H2. In that case, as for "Benjamin-Ono" solitons (e.g.
Ono, 1975) which require L < H2, we still have u2 ' ul and (22) still applies subject to
a < Hi as before.

For solitary waves of amplitude greater than 2(hH1 )1 /2 it seems plausible that shear
instability would occur on the forward face as soon as the interfacial Richardson number
drops below some critical value Ric which is presumably 1. The growth and coilapse of
Kelvin-Helmholtz billows, and restratiqcation of the fluid into a thicker interface layer,
may all occur in a time scale given by some multiple of N-1 , where N is the buoyancy
frequency in the interface and is given by N2 = g/h. Hence N-1 = (hHl)1/2 (g'H11)-1/ 2 .
This is the time taken by the wave to travel a distance (hH1 )1 /2 which is very much less
than L, indicating that the mixing proceeds rapidly compared with the passage time of
the wave. Hence one might expect that, after the initial instability, the interface thickens
rapidly to achieve some interfacial Richardson number Rit ( - 0.4 according to Thorpe
(1972)). As sketched in Figure 4, the interface might then continue to grow until the wave
crest passes, after which it remains at the same thickness given by

ht = Rit a2/H 1 . (23)

This thickening of the interface, from an initial thickness of ho, has an associated increase
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in potential energy of g'p(h' - h2)/24. If we assume that this energy is a fraction a of the
total energy lost by the propagating soliton, which is assumed to hold together in spite of
the dissipation, we have

adE/dx = -g'p(h2 - h2)/24 (24)

= -g'pRi2HT 2(a4 - a4)/24 (25)

where ao = (Hiho/Rit)1/2 is less than the critical amplitude (HIho/Ri.)1/2 at which decay
of the soliton would cease.

Further development of (25) requires a formula for the total soliton energy E. For L > H2

the soliton interface displacement C as a function of x is given by C = asech2(x/L) where,

for a ., H1, aLz = 3HH 2 (e.g. Benney, 1966). Hence

S -gpa 2 L = (4 2gIpHi 1/2 a3/2 (26)

and, from (25) with Rit = 0.4 and a = 0.2 (Oakey, 1982),

da/dx = -O.O14HT3H 1 2 a-1/2(a4 - a4). (27)

If, on the other hand, L < H2, the "Benjamin-Ono" solitons (Ono, 1975) have

a[(x/L)2 + 1]-1 with aL = 1H, so that

E = (r/2)g'pa 2 L = (2ir/3)g'pI 2 a. (28)

Hence, with a = 0.2 and Rit = 0.4 as before,

da/dx = -0.016H - 4 (a4 - a4). (29)

In both situations, therefore, waves which mcet the instability criterion (22) decay rather
rapidly at first before eventually stabilising at a, = (Hiho/Ri )1/2. As

(Rit/Ri0 )2ao = 2.56a 4 for Rit = 0.4 and Ric = 0.25, the decay rate is rather

insensitive to ho; typical decay distances in either situation are several tens of kilometres
(Bogucki and Garrett, 1991).

445 .. ... . . .
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Application of these simple ideas to the real ocean may require allowance for other effects

such as geometrical spreading and, more importantly, extension of the model to allow for
a continuously stratified upper layer.

5. DISCUSSION

A picture of a rather persistent internal wave field, slowly losing energy to dissipation and

vertical mixing with Kv = 10-5 m2 s- 1 , still seems appropriate for the main thermocline.

As remarked by Gregg (1987), diapycnal mixing may then be a rather unimportant

process compared with other processes such as ventilation from the surface mixed layer.

One part of this picture is the prediction of E from nonlinear internal wave interaction

theories. The validity of the model of Henyey et al. (1986) is still a matter of debate (e.g.

Gargett, 1990), but it is, in a sense, a local model, giving the local flux of energy to small
scales and hence mixing for a typical spectrum. The calculations of McComas and Miller

(1981a) do seem to be valid for the energetic low-frequency, low-mode, parts of the

spectrum, but it is just these spectral regions which are sufficiently long-lived to propagate
into a region with a different inertial frequency or to interact with bottom topography.

Thus the energy losses from the energetic part of the spectrum in the McComas and

Miller (1981b) theory do not immediately lead to turbulence. They need to be integrated

with consideration of other processes affecting the internal wave spectrum before we can

be confident of the implications for local mixing.

In particular, the pioneering study by Cox and Johnson (1978) of the consequences of

horizontal anisotropy in the internal wave spectrum need to be re-examined; the problem
is central to any consideration of the evolution of a spectrum that is distorted by bottom

reflection, surface generation or just the lateral spreading of a patch of high energy.

The simple scenario shown in Fig. 1 is probably not valid near the sea surface. In

particular, if an elevated inertial peak is generated there which is not connected in a WKB

fashion to spectra at lower latitudes, then some extra local dissipation must be occurring.

The region near the seafloor is also likely to be anomalous. It has been emphasized here

that the mixing produced by internal waves near a sloping bottom may be significant not

only for basin-average diapycnal fluxes, but also for the velocity boundary condition for

low frequency flows. There is a need to mount more observational programs, capable of

measuring eddy momentum and buoyancy fluxes, near sloping bottoms, particularly those
that are convex (to avoid destructive interference of reflected internal waves) and have a

Burger number greater than 1 (to emphasize slope effects).

Our developing understanding of the deep-sea internal wave field will probably be of
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limited applicability on continental shelves, though there are the same concerns with

surface generation and the role of a sloping bottom. A reasonably common phenomenon

of shelf seas is the internal soliton; this paper has presented a simple preliminary model of

the mixing produced at a thin interface by an internal soliton which is itself damped in

the process.

In summary, therefore, the paradigm of Fig. 1 may be appropriate for some parts of the

ocean, though some of its foundations are still rather shaky. Many interesting and

important questions remain, however, about parts of the ocean where this picture is not
appropriate but where internal waves have significant effects. In other words, our

paradigm may hold in regions where internal waves do not matter and be inadequate in

places where they do!
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A STRATEGY FOR INVESTIGATING AND MODELING INTERNAL WAVE SOURCES
AND SINKS
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Seattle. WA 98105-6698

ABSTRACT

We do not know what forces the internal wave field, except in the broadest terms. The spec-
tral levels are remarkably uniform, but the likely sources have obvious spatial and temporal vari-
ability. This argues that long-range horizontal propagation of energy must be an important factor
in "smoothing out" the irregularity of the sources. Research suggests that only low-mode, low-
frequency internal waves are capable of propagating significant distances. In the short term,
measurements of the directional spectra of these waves should therefore reveal the dominant
energy sources for the internal wave field. In the longer term, a global model of the internal
wave field and its associated diapycnal mixing could be constructed by simulating the genera-
tion, propagation, and dissipation of these low-mode, low-frequency waves. This is a worthy
long-term goal for internal wave research.

WHAT DO WE WANT TO KNOW?

In the last 20 years we have learned a great deal about the spectral and spatial distribution
of internal wave energy. Measurements show the spectrum is remarkaby stable compared, for
example, with that of surface waves. It is therefore useful to talk about a "universal" spectral
shape for internal waves (Garrett and Munk, 1979). A nearly universal spectrum is consistent
with theory (MOller et al., 1986), which predicts that wave-wave interactions produce an inter-
nal wave spectrum that is not very sensitive to the details of the wave sources. More recently,
direct comparisons between measurements of the kinetic energy dissipation rate, e, and values
predicted by wave-wave interaction theories (see Gregg and Padman discussions, this volume)
show some agreement, although the story is far from complete at present. Notably, although only
small variations are seen in the spectral level, they correspond to much larger variations in F, a
spectral transfer rate. The internal wave field thus looks much more dynamic and much less
universal when viewed in terms of rates rather than levels.

In contrast, only modest progress has been made in determining the sources of the internal
wave field. There are variations in the energy and spectral level (Wunsch and Webb, 1979;
Levine et al., 1985). Some investigators' have found correlations between sources and internal
wave characteristics. Levine et al. (1985) find a wind forced signal in the Arctic Ocean; Padman
and Dillon (1991) and Levine et al. (1983) find tidally forced signals; Kunze and Sanford (1984)
find strong signals associated with mesoscale rings and fronts; and D'Asaro (1985a) finds a sig-
nal from strong storms. In general, however, it has been difficult to find any clear association
between the wave field's sources and sinks and its behavior. This is not due to any lack of

lThis is clearly an incomplete list I apologize to investigators who have not been mentioned.
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potential sources and sinks. Idealized calculations indicate that wind stress (D'Asaro, 1985b),
surface waves (Watson, this volume), bottom topography (Bell, 1975), and geostrophic currents
(Watson, 1985), among others, could all potentially be important. The problem is distinguishing
among these sources.

I propose that the next goal of internal wave research should be to find and quantify the
internal wave sources. The key to the strategy is to realize that only low-mode, low-frequency
internal waves can propagate substantial distances (>1000 kin) in the ocean. These waves must
therefore supply energy to the wave field in regions where the sources are weak. Measurements
of the directional spectrum of these low-mode waves should reveal their sources, since different
sources will undoubtedly be distributed differently in space and time. In the long term, we might
consider working toward global models of the internal wave field which track energy from
sources into propagating low modes, back into the local wave field, and finally to local dissipa-
tion and diapycnal mixing. The remainder of this paper will elaborate on these ideas.

THEORETICAL RESULTS

Scales

Internal waves span a wide range of scales and thus a wide range of dynamical regimes.
Figure 1 shows the spectral domain of internal waves as a function of WKB normalized, hydro-
static, vertical wavenumber (horizontal axis), frequency (vertical axis), and horizontal

100 a=N 71
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Fig. 1. Spectral density of internal wave energy according to GM76 [after McComas, 1977] as
a function of vertical wavenumber Kz (horizontal axis), frequency a (vertical axis), and
horizontal wavenumber K (dashed diagonal lines) using the hydrostatic approximation.
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wavenumber (diagonal lines). The distribution of energy is contoured (Garrett and Munk, 1975).
Most of the energy is at low wavenumbers and low frequencies.

Propagation

Internal waves can propagate horizontally and thus spread energy away from source
regions. The horizontal group speed is contoured in Fig. 2 (dashed curves). Only the low modes
have significant speeds.

Very nearly inertial, low-mode waves cannot exist, since the I0 effect changes f by more
than o-f over their inverse horizontal wavenumber (Fu, 1981). This region is indicated by the
shaded region in the lower left-hand comer of Fig. 2. Vorticity gradients in geostrophic flows are
usually comparable to 03 and sometimes far exceed it (Kunze, 1985). The propagation of internal
waves will be strongly modified by interactions with these flows. The region of limited propaga-
tion will thus be considerably larger than the "no waves" region in Fig. 2.

The low phase speed of many internal waves limits their propagation. The frequency of
waves propagating in a background flow will be Doppler shifted by an amount Ao 4k6, where
kis their horizontal wavenumber and Vis the change in the background velocity through which
they have propagated. If A; exceeds o-f, the waves may be Doppler shifted into a critical
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Fig. 2. Contours of hydrostatic, WKB horizontal group speed G11 (dashed curves) and Uc,, the
background velocity necessary for critical layers (solid curves). The region of waves
excluded by the 03 effect is shaded.
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layer. Even if they are not, they will be strongly distorted. Contours of the back_ound velocity
necessary for the formation of critical layers are plotted in Fig. 2; Ucr = (o-f)/I k 1. Because the
internal wave field itself commonly has velocities approaching 10 cm/s, waves with Ucr <
10 cm/s are unlikely to propagate far. This defines a region of strong wave-wave interaction at
mid and high wavenumbers in which wave propagation is limited. Mesoscale geostrophic
motions commonly have velocities of 10-100 cm/s. Waves with Ucr < 100 cm/s will not pro-
pagate far in regions with such a mesoscale eddy field. Oceanic velocities in excess of 100 cm/s
are uncommon except in the strongest currents. The propagation of waves with Uc, > 100 cm/s
will usually not be inhibited by interaction with ocean currents.

Wave-Wave Interaction

The sources of internal waves are believed to be concentrated at low wavenumbers.
Wave-wave interaction theories predict a cascade of energy from small to large wavenumbers,
as indicated by the arrows in Fig. 3. Although there is some disagreement (in details) between
the results of resonant and eikonal approximations (Miller et al., 1986), there is consensus that
these interactions feed energy to small-scale dissipation and mixing. The transfer of energy
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Fig. 3. Decay time for a 10% spike in the spectrum shown in Fig. 1 [from McComas, 1977].
The region where this time is shorter than a wave period is shaded. Dashed contours
indicate that spike grows. Arrows indicate direction of energy flux due to nonlinear
interactions: resonant theory [McComas, 1977] outside of shaded region, and eikonal
[Henyey et al., 1986] inside.
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between waves of different scales is due to the nonlinearity of the equations of motion, and thus
becomes stronger at higher wavenumbers. If the rates are high enough, the waves interact so fast
that they can no longer be described as freely propagating. Estimates of the energy transfer rates
(Fig. 3) indicate that this limit is reached for waves with wavenumbers greater than 10-100 m-1 ,
as indicated by the shading. At wavenumbers smaller than this, waves can propagate for some
time before they lose their energy to the rest of the wave field. Contours of this interaction time
(Fig. 3) show a strong dependence on vertical wavenumber. Only the small wavenumbers (i.e.,
the low modes) have interaction times longer than 10 days (106 s).

Which Waves Can Propagate?

A "mean free path" Lfr,, for horizontally propagating internal waves is estimated as the
product of the interaction time 'ri, multiplied by the horizontal group velocity Gy. Approximate
contours of fm = 1000 km are shown in Fig. 4. Only a relatively small range of waves can pro-

pagate 1000 km. Another, perhaps more accurate estimate of Lfr is given in E. Hirst's paper in
this volume.
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Fig. 4. Spectral location of Propagating Waves. High-wavenumber and high-frequency waves
(Nonlinear) interact strongly and cannot propagate far. Many near-inertial waves
(Refracted) are strongly refracted by internal waves and geostrophic currents and also
cannot propagate far. The edge of this domain (dashed curve) is defined by Uc, =
0.2 m/s. Inertial, low-mode waves are prohibited by the 13 effect (No Waves). Propaga-
tion distance of low-mode, somewhat superinertial waves (Propagating), computed by
hand from Figs. 2 and 3, is contoured. The end of the contours indicates inability to
intprpolate the figures. Dotted contour indicates that perturbations grow.
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Figure 4 partitions the internal wavw domain into various dynamical regions based on the
above considerations. At high wavenumbers. ti, is short, and the waves are strongly nonlinear.
They cannot propagate far. At lower wavenumbers, the waves become increasingly linear but
still have small values of Lfme. At low wavenumbers, but very close to the inertial frequency,
wave propagation is limited by the P effect and interaction with the mesoscale flow. Only low
modes with frequencies somewhat above f can propagate basinwide. I will call these "Propagat-
ing Waves."

THE ROLE OF PROPAGATING WAVES

Now consider a region of the ocean far from strong sources of internal waves such as wind,
bottom topography, and internal tides generated on the shelves. Pick a region in the middle of a
large ocean, over flat topography. The IWEX site might not be a bad choice! The chances are
that the local sources are well below average. Nevertheless, the internal wave field is compar-
able to that found at more energetic sites. Wave interaction calculations and typical d'ssipation
rates suggest that this wave field should lose most of its energy in 50-100 days, yet there is little
evidence that this happens. Where does the energy come from to renew the wave field in this
region? I suggest that it is supplied by the low-n, ode, large Lft,. Propagating Waves discussed
above. 2

If, as indicated in Fig. 3, the major sources of internal waves are at low modes and low fre-
quencies, much of their energy will be put into the Propagating Waves. These waves will
disperse from the region where they were generated, releasing energy only slowly and over a
wide region. Consequently, the Propagating Waves will flux energy away from the source
regions. In a sink region, therefore, the directional spectrum of Propagating Waves will point
toward the sources, much as surface-wave swell spectra point toward distant storms. Measure-
ment of this spectrum should teach us about the distribution of sot irces.

Another consequence is that away from strong local sources the properties of the local
internal wave field are determined by the rate at whirnh the Propagating Waves give up energy.
This rate is slow because these waves are nearly linear;, thus resonant wave-wave interaction
theory should be accurate. Other interactions such as scattering from topographic features may
also be important. The local rate of energy loss from the Propagating Waves should equal, on
average, the local rate of energy dissipation and thus govern the local rate of internal wave mix-
ing. We should therefore observe a relationship between the field of Propagating Waves, the
local internal wave spectrum, and the dissipation rate.

EVIDENCE FOR PROPAGATING WAVES

Existing evidence, although limited, supports these ideas. During IWEX (MUller et al.,
1978), detailed measurements were made of the internal wave field in the Sargasso Sea
(27°N,70°W), a region probably weak in local sources. During the limited time of the meastre-
ments (42 days), waves with frequencies between f and about 4f were significantly anisotropic,
whereas those at higher frequencies we ,e nearly isotropic. The anisotropic waves were all pro-
pagating toward the southeast, i.e., away from the North American continental shelf. Semidiur-
nal tidal energy, both anisotropic and dominated by low modes. looks like a Propagating Wave
generated on the shelf. Interestingly, Muller et al. (1978) were so unconcerned with sources that
the season of the measurements is not even mentioned!

.~ - ...
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Evidence for propagation of internal waves over long distances is provided by Fu's (1981)
analysis of long-term abyssal moorings in the North Atlantic. The large-scale internal wave field
was modeled by linearly propagating a Garrett-Munk-like wave field with no inertial peak north-
ward from the equator. The model (Fig. 5) produces both near-inertial peaks and superinertial
spectra which agree remarkably well with the abyssal data (given the simplicity of the model).
This supports the idea that internal waves can propagate significant distances. The data are
insufficient to determine the wavenumbers of the waves that propagate. The model worked
poorly in the upper ocean, in the thermocline, and over rough topography. Fu (1981) models
these features, with some success, as due to local sources of near-inertial waves.

Lai and Sanford (1986) observed the local generation of low modes after the passage of a
hurricane near the New England continental slope. First the lowest mode was observed and then
higher modes; the timing was consistent with generation at a site 80 km away.
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WIND FORCING
We do not know which of the possible sources of internal wave energy is most important.

Rather than attempting to understand them all, we might look at just one and ask whether the
data are consistent with its being the primary source. I propose that wind forcing is a primary
candidate, although tidal forcing is another possibility. Internal waves in the thermocline usually
show a dominance of downward propagating, near-inertial energy. Examples include data taken
by Leaman and Sanford (1975), D'Asaro (1984), and Miiller et al. (1978). Atmospheric forcing is
the obvious source of this asymmetry.

Mixed Layer Inertial Currents

Perhaps the best understood source of internal waves is excitation of mixed-layer inertial
motions by the wind. Because atmospheric wind fluctuations are typically both much larger than
a Rossby radius in the ocean and move faster than the lowest baroclinic phase speed, the wind
stress tends to excite mostly near-inertial waves (Gill, 1984). It has been apparent since the first
near-surface current meter records that strong mixed-layer inertial currents are generated by
fluctuating wind stresses (Webster, 1968). A simple slab mixed.layer model does a decent job of
simulating this process under most conditions, as was first demonstrated by Pollard and Millard
(1970). Mixed-layer inertial currents and the energy transferred from the wind to these currents
can be estimated from wind data using this model.

How well can we predict the flux of energy from the wind to mixed-layer inertial currents?
An example of such a calculation using real wind measurements is shown in Fig. 6. The required
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Fig. 6. Inertial-energy flux computed for NOAA Data Buoy Center buoy 46006 near
410N, 140'W. (a) Wind stress computed with Garratt (1977) drag law. (b) Mixed-layer
inertial velocity computed using 50 m mixed-layer depth. (c) Energy flux to mixed-
layer inertial motions. (d) Integrated energy flux.
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data are the wind stress (top panel), a drag law, and the mixed layer depth, here assumed to be
50 m. The resulting energy flux (bottom two panels) is highly intermittent and is dominated by a
few storms. For 10 years of data from Ocean Weather Station P, for example, the kurtosis of the
energy flux was estimated at 360 and the average November energy flux was increased 60% by a
single storm (D'Asaro, 1985b). Storms are clearly important, and wind stress data are required at
least every few hours. Operational weather products probably do not give these winds with
sufficient accuracy over the ocean, (Thomson, 1983). Furthermore, the drag coefficient can vary
by a factor of 2 during storms (Geemaert, 1988), resulting in significant changes in the computed
inertial currents (D'Asaro, 1985a). Because of these factors, accurate predictions of mixed-layer
inertial currents can probably not be made using operational weather products until predictions of
winds over the ocean are significantly improved.

Figure 7 shows the 10 year average annual cycle of energy flux to mixed-layer inertial
currents computed using a simple slab model and climatological mixed-layer depth (D'Asaro,
1985b). The flux is large in the fall and winter and small in the summer because of the stronger
wind in the winter. It is largest in the early fall because of the thinner mixed layers. Although
the proper calculations have not been made, the large-scale spatial pattern is probably quite simi-
lar to that of the wind stress (Fig. 8). The important point is that clear seasonal and large-scale
geographical signals exist. We do not know how well operational products can predict these sig-
nals, although prediction of seasonal and regional averages is likely to be more accurate than that
of local statistics.

< H> (a)

(b)
rI (< H>)

NY 4
E

E 2 -

01
J A S O N D J F M A M J

Fig. 7. Annual cycle of inertial energy flux at OWS-P (500N, 145 0W). (a) Annual cycle of
mixed-layer depth. (b) Annual cycle of energy flux to mixed-layer inertial currents com-
puted as in Fig. 6 but using mixed-layer depth from (a).
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Fig. 8. Annual wind stress magnitude (Hellerman and Rosenstein, 1983). Contour level is
0.1 Pa. [from Briscoe, 1984]

Low-Mode, Near-Inertial Waves

Most of the energy in mixed-layer inertial currents probably propagates into the stratified
ocean in the form of local and propagating near-inertial internal waves. Figures 9-12 show a
simulation of the ocean's response to a single storm. The forcing, latitude, and stratification are
tuned to match the conditions observed during early October 1987 as part of the OCEAN
STORMS experiment. The model is a two-dimensional variant of Price's (1983) hurricane
model, with 21 layers, full nonlinearity, hydrostatic dynamics, a P3 plane, and a vertical viscosity
of 2 x 10-4 m2/s, which improves its fit with the data. It is forced in the mixed layer by a Gaus-
sian storm centered at y = 0 (47.5*N).

The response of the model ocean to this storm is almost entirely near-inertial. Figure 9
shows depth-time contours of the inertial amplitude as a function of depth and time in the upper
kilometer. The model storm forces mixed-layer inertial currents of about 40 cm/s. For the first
10 days after the storm, the inertial energy stays in the mixed layer while the P3 effect increases
the north-south wavenumber of the currents as described by D'Asaro (1989). There is some
slight penetration of energy into the thermocline owing to the imposed vertical viscosity. Even-
tually, the horizontal wavenumber becomes large enough for linear wave propagation to occur.
Between days 300 and 320, almost all the mixed layer energy is transferred to the upper thermo-
cline and to low-mode, near-inertial waves. Contours of inertial speed in the latitude-time plane
(Figs. 10-12) show the distinct separation and propagation of modes I (starting on day 306) and
2 (starting on day 320). Both modes are seen at the surface (Fig. 10) and in the upper thermo-
dine (Fig. 11), but only mode 2 is seen at 1000 m (Fig. 12) because this is near the zero crossing
of mode 1. Similar results were seen in simulations by Gill (1984).

The low modes rapidly pr-opagate southward away from the source region. In the simula-
tion, waves in the thennocline 2000 km south of the storm have speeds of about I cm/s and verti-
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Fig. 9. Inertial speed as a function of depth and time directly beneath the storm (y = 0) for simu-

lation of ccean response to a strong storm. Contour interval is I cm/s.
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Fig. 11. Inertial speed at 100 m as a function of meridional distance and time. Comparison
with Fig. 10 shows propagation of energy from the mixed layer starting near day 286
and southward propagating modes. Contour interval is 1 cm/s.

cal displacements of about I m for at least 20 days. These waves have distinct properties. They
are low mode and have a meridional wavelength near 100 km. Their frequency is about P3Ay,
where Ay is the meridional distance from the storm, which equals 1.3f near 30*N. A fully three-
dimensional calculation would show a zonal wavelength near U/f, where U is the advection
speed of the storm. Although wave-wave interactions are not included in the model, these scales
are clearly in the range of the "Propagating Waves" shown in Fig. 4. These waves should theie-
fore not be strongly attenuated by interaction with the rest of the wave field. Their signatures are
distinct and should be easily measured, given the proper instrumentation

In this simulation, the energy put into the inertial currents, averaged over the 30 day length
of the ocean response, is about 10- 3 W/n 2. The average wintertime fluxes estimated in Fig. 7 are
several times this. Furthermore, because the propagating waves always go equatorward, the total
southward flux is the result of all forcing north of a given location. It would not be unreasonable,
therefore, to expect the peak wintertime amplitude of Propagating Waves to be several times that
shown in Figs. 9-12. A far weaker signal should be expected in the summer.

SOME SUGGESTIONS FOR RESEARCH

How can we detect Propagating Waves generated by storms? The signal is so weak that the
waves from a single storm will probably not be obvious unless the storm is very strong (e.g., Lai
and Sanford, 1086). Measurements will therefore have to be designed to detect the signal. The
key appears to be averaging either in the vertical, to isolate the low-mode structure, or in the
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Fig. 12. Inertial speed at 1000 m as a function of meridional distance and time. Contour inter-
val is 0.5 cm/s.

horizontal, to isolate the large horizontal scales, as well as filtering in time to isolate the distinct
frequency. One approach would be to use integrating temperature sensors to filter out the high
modes. Vertical or horizontal acoustic propagation is another promising technique. Given the
strong seasonal cycle expected of wind forcing, a long time series of directional measurements of
the low-mode waves seems like the most promising sampling scheme. A subtropical location
south of the wintertime generation region that is subject to Propagating Waves generated by late
summer hurricanes and a large internal tide source would seem ideal.

We also need better theoretical descriptions of the processes controlling propagation of low
modes. Can we really expect to see these low mode signals? This depends on how energy gets
out of them. Calculations of resonant wave-wave interaction, which should be accurate for these
weakly nonlinear waves, should be reexamined to include the effects of directionality, depth, and
path-varying stratification. Topographic features and mesoscale eddies may scatter energy from
these propagating waves into the local internal wave field. We don't know how to estimate these
effects at present.

TOWARD A GLOBAL MODEL OF THE INTERNAL WAVE FIELD

Some oceanographers consider small-scale processes a source of noise and a sink for
money. But they still look to the small-scale research community for estimates of the magnitude
and variability of small-scale heat, salt, and momentum transport. Although we have little to
offer for momentum transport, I believe we can envision how a predictive model of diapycnal
mixing due to internal waves could be constructed.
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First, we need to quantify at least some of the sources of internal waves. The time and
space variability of the sources is a key factor because it will allow us to distinguish various
sources in data. As mentioned previously, I think we have a good start in quantifying the genera-
tion by wind. Tidal generation should also be investigated. Initially, it is probably not necessary
to quantify all the possible sources since it will eventually become apparent if we are missing a
major one. It certainly would be enlightening, for example, to see what an internal wave field
generated only by the wind would look like!

Second, we need to understand how the energy from these sources is distributed between
the local wave field and the Propagating Waves. For wind-generated energy in the absence of
mesoscale eddies, we can probably estimate this. The effect of mesoscale motions is not well
studied.

Third, we need to know how far the Propagating Waves travel and how they give up their
energy. It seems likely, as argued here, that only a small range of low-mode waves can pro-
pagate significant distances. If true, this greatly simplifies the problem. There is ample room for
both observation and theory here. Our ignorance appears to be due to inattention, not hard tech-
nical problems, so advances should be rapid.

Fourth, we need to know how the energy supplied to the local wave field by local sources
and by the Propagating Waves cascades through the local wave field to mixing. Great progress is
being made here, but we are not yet finished.
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OBSERVING OCEANIC INTERNAL WAVES: What have we learned? What

can we learn?
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ABSTRACT

An incomplete and biased assessment is made of the current state of our
understanding of oceanic internal waves. The purpose of this presentation is to
remind researchers of some inconsistencies that exist between the explanation and
description of certain features of the internal wave field. The goal is to renew interest
and guide discussion toward certain observations that may ultimately lead to an
improved understanding of the dynamics controlling internal waves.

INTRODUCTION

The oceanic internal wave field has been measured by many researchers for decades.
What have we learned? If condensed into a single short answer, it is that the internal
wave field is remarkably constant in time and space. If one puts instruments
anywhere into the ocean, then it is highly probable to expect that the observed
fluctuations will follow certain characteristic spectral shapes and coherence structures.
This realization led to the development of an empirical description of the wave field
known as the Garrett-Munk model (Garrett and Munk, 1972, 1975; hereafter referred
to as GM). This model provides a kinernatically consistent framework for comparing
different types of observations that may be nade at different times and locations. It is
actually because this first-order description works so well that it has been difficult to
answer basic questions about the dynamics of the wave field, such as what are the
important sources and sinks of internal waves. It is difficult to tell from where a
particular wave came, and to where it is going, when its identity is obscured by a
surrounding random sea of oscillations.

Despite the success of the Garrett-Munk formulation, there are notable omissions
from this steady-state, climatological description. For example, waves in the near-
inertial frequency band vary dramatically in space and time, and therefore are not
easily characterized by a steady-state description. Much effort has gone into studying
the transfer of energy from the wind into the near-inertial waves of the upper ocean.
The internal tide is also not included in the GM model. The internal tide is
omnipresent throughout the ocean and often represents a significant fraction of the
total internal wave energy. Deviations from GM are also found near topography;
either the topography is acting as a source of waves or the interactions are causing a
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perturbation in the universal wave field. In unique environments, such as beneath the
Arctic ice pack, dramatic differences in the overall wave energy and spectral shape
have been found. Study of atypical systems may provide clues toward understanding
the more typical ocean.

The second question in the title: "What can we learn?" really depends upon "What do
we want to learn?" The answer will vary depending upon who asks the question;
investigators in different specialties will be interested in different aspects of oceanic
internal waves. For example, some acousticians may be interested in the inte.nal
wave correlation functions that describe the fluctuations of sound speed. Other
acousticians may want to know higher order statistics, such 4s a statistical description
of the occurrence of sharp gradients in velocity or sound speed. The specific internal
wave information that is useful will depend on the particular acoustic study. High-
frequency transmission experiments would be affected by a different scale internal
wave than an acoustic tomography experiment.

Researchers studying turbulence and mixing are primarily interested in internal waves
for their role in providing small-scale vertical shear. The ability to predict how the
waves affect the time/space distribution of the Richardson number wotld be valuable.
Can estimates of turbulent dissipation be made from observations of the internal wave
field alone, as has been suggested (e.g., Gregg, 1989)? To deterinai if this is
feasible, an improved description of the space/time variation of thr, internal wv.we field
is needed.

Some investigators are interested in the remote sensing of internal waves. The initial
emphasis in this field has been on detecting solitons and large-aniplitude wav'es that
produce a significant surface expression. Attention is also focused cn prcfe F-
generate these signals, usually interaction of the tide with topography. Cl.a,
GM description of the wave field is less important to this group.

And there are those investigators that follow the approach of the mainstream physicist
and try to understand the details of the nonlinear energy transfer among the waves.
Theoreticians need, at the very least, to have an accurate description of the wave field
in time/space or frequency/wavenumber in order to insure relevance to the oceanic
environment. Estimates of higher-order statistical quantities would undoubtedly also
be of interest.

In each of these examples a different aspect of the internal wave field is errphasized
depending upon the objectives of the researcher. Certainly there are overlaps, but the
labeling of certain advances in internal waves as important may devenud on who is
doing the labeling.

So, where do we go from here? Two possible paths to follow are new measureritnts

and new data, or old observations and new analysis. There are a variety of new
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instrumental developments that will be able to measure new quantities of the wave
field. Better Doppler sonars, improved neutrally buoyant drifters, acoustic travel-time
experiments, and longer time-series observations may provide views of the wave field
from different perspectives and lead to an improved description and understanding.
However, the remarks here will be confined to the second track--are there different
ways to look at the old data? Given the large investment that has been made in
obtaining these data it makes sense to spend some effort in exploiting the data to the
fullest. Armed with new ideas, a reexamination of our data banks may reveal some
interesting results, or possibly, suggest new observations that would be most fruitful.
As a step toward this goal, a few topics are reexamined below to provide motivation
for continuing the search for new types of analysis and new ways of looking at the
data.

INTERNAL WAVE CONTINUUM

One approach to describe the internal wave field is to assume it is composed of a sum
of waves from a smooth continuum of frequencies and wavenumbers. This is the
basis of the GM model and provides a first-order statistical description of the wave
field. This framework allows us to view the wave field in a variety of different
spaces. The energy spectrum can be displayed as functions of vertical wavenumber,
horizontal wavenumber or frequency. Different vantage points provide different
revelations. For example, the spectrum of vertical shear (au/az) is plotted as a
function of frequency co and vertical wavenumber f3 (Figure la). The axes are
logarithmically scaled, as are the contour levels. The GM shear spectrum is separable
in o-3 space and increases with fl before leveling off at fl > fl.. An ad hoc constant
upper wavenumber cutoff/3c has been included. One gets an entirely different
impression of the spectrum looking at the so-called volume preserving version (Figure
lb). Here equal volumes contribute equally to the total variance. It is clear that
more of the shear variance comes from frequencies nearf and wavenumbers near .
Hence, if one is using the GM model to estimate shear for some mixing
parameterization (e.g., Gregg, 1989), then the ad hoc choice of i3 is important.
Maybe g is a function of frequency? Maybe f3l varies in a more complicated way
(Duda and Cox, 1989)? How do uncertainties in fl translate into uncertainties in
predicting mixing from models?

Critical layer absorption is a process that is thought by some to play an important role
in internal wave dynamics. A critical layer occurs at the depth where the horizontal
phase speed of the wave equals the horizontal velocity of the mean flow. To get an
idea of the likelihood of this occurring in the internal wave field, the magnitude of the
phase speed is plotted in the same region of w-f3 space as the shear spectra (Figure
lc). The phase speed is simply wo/a where a is the horizontal wavenumber and is
determined from the linear dispersion relationship. Waves with lower phase speeds
are more likely to encounter mean flows of comparable speed and be absorbed in
critical layers. Considering Figures lb and ic together, it seems that the region of W-
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instrumental developments that will be able to measure new quantities of the wave
field. Better Doppler sonars, improved neutrally buoyant drifters, acoustic travel-time
experiments, and longer time-series observations may provide views of the wave field
from different perspectives and lead to an improved description and understanding.
However, the remarks here will be confined to the second track--are there different
ways to look at the old data? Given the large investment that has been made in
obtaining these data it makes sense to spend some effort in exploiting the data to the
fullest. Armed with new ideas, a reexamination of our data banks may reveal some
interesting results, or possibly, suggest new observations that would be most fruitful.
As a step toward this goal, a few topics are reexamined below to provide motivation
for continuing the search for new types of analysis and new ways of looking at the
data.

INTERNAL WAVE CONTINUUM

One approach to describe the internal wave field is to assume it is composed of a sum
of waves from a smooth continuum of frequencies and wavenumbers. This is the
basis of the GM model and provides a first-order statistical description of the wave
field. This framework allows us to view the wave field in a variety of different
spaces. The energy spectrum can be displayed as functions of vertical wavenumber,
horizontal wavenumber or frequency. Different vantage points provide different
revelations. For example, the spectrum of vertical shear (au/az) is plotted as a
function of frequency w and vertical wavenumber fl (Figure la). The axes are
logarithmically scaled, as are the contour levels. The GM shear spectrum is separable
in w-#3 space and increases with fl before leveling off at f3 > fl.. An ad hoc constant
upper wavenumber cutoff 3, has been included. One gets an entirely different
impression of the spectrum looking at the so-called volume preserving version (Figure
lb). Here equal volumes contribute equ.lly to the total variance. It is clear that
more of the shear variance comes from frequencies nearf and wavenumbers near .
Hence, if one is using the GM model to estimate shear for some mixing
parameterization (e.g., Gregg, 1989), then the ad hoc choice of f3o is important.
Maybe g, is a function of frequency? Maybe 3o varies in a more complicated way
(Duda and Cox, 1989)? How do uncertainties in 0, translate into uncertainties in
predicting mixing from models?

Critical layer absorption is a process that is thought by some to play an important role
in internal wave dynamics. A critical layer occurs at the depth where the horizontal
phase speed of the wave equals the horizontal velocity of the mean flow. To get an
idea of the likelihood of this occurring in the internal wave field, the magnitude of the
phase speed is plotted in the same region of w-fl space as the shear spectra (Figure
ic). The phase speed is simply &/a where a is the horizontal wavenumber and is
determined from the linear dispersion relationship. Waves with lower phase speeds
are more likely to encounter mean flows of comparable speed and be absorbed in
critical layers. Considering Figures lb and ic together, it seems that the region of w-
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0 space with the highest shear variance is the most susceptible to critical layer
absorption. This realization casts some doubt on the reliability of parameterizing the
vertical shear from the GM model--variations of the background shear may lead to
variations in wave induced vertical shear. Even if critical layer absorption may not
be important in the total energy budget of internal waves, it may be significant in the
waves that contain most of the shear.

INTERNAL TIDE

The internal tide is a ubiquitous feature in the world ocean. Its existence has been
documented from early in this century. While not included in the GM formulation,
the energetic internal tide is important to some investigators, e.g. acousticians,
because of its significant contribution to the vertical displacement and straining of the
stratified ocean. However, does the internal tide play a role in the dynamics of the
wave field?

The internal tide is generated by the interaction of the barotropic tide with
topography. The continental shelf break is believed to be a significant source.
However, the sea floor as a whole, although much less steep, may actually provide
significantly more flux of internal tidal energy into the ocean than the entire
continental shelf region (Baines, 1982). There are varying opinions as to whether the
intern. 'e is a significant source of energy to the internal wave continuum. The
tide is ii attractive candidate for an internal wave source because it is widespread in
space and steady in time. This fact is consistent with the observed universality of the
internal wave continuum. Also, estimates of the energy flux into the internal tide
from the sea floor of order 1 mW m2 are comparable to that needed to maintain the
entire internal wave field (Bell, 1975).

But can nonlinear interactions transfer energy out of tidal frequencies at a significant
rate? Or does the internal tide propagate passively through the internal wave
continuum? One theoretical estimate from weak-interaction theory suggests that the
tide could not be a significant source (Olbers and Pomphrey, 1981), however this
study was not comprehensive. Perhaps including non-resonant interactions will yield
a aifferent result.

I! has also been argued that if me tide were a significant source, then there should be
a different internal wave spectrum in non-tidal seas. The Mediterranean Sea would
provide an int -.sting testing ground since there are regions where the tide is weak.
The author ha,. not yet located convincing evidence (although some may exist) that
compar.z observations there to the riM spectrum. The Black Sea is another nontidal
sea; some evidence (albeit limited) indicates that the spectral levels are highly variable
and well below GM (Ivanov and Sereoryanyy, 1982).

There is some suggestion from observations of a link between internal tide and the
continuum (Figure 2). Time series of velocity from the JASIN experiment near
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Figure 2. Variance of horizontal kinetic energy in the continuum (. 1 to .3 cph) is plotted
against variance in the tidal band (.076 to .090 cph) from nominal depths of 200 (X),
600 (+), 1000 (0) and 1500 m (A). The straight line indicates a constant ratio of tidal to
continuum variance fitted to data at 200 and 600 m. (Adapted from Levine et al., 1983.)

Scotland indicate a correlation between energy in the tidal band and in the continuum.
A higher energy internal wave continuum was found with larger internal tides. This
correlation, of course, does not prove cause and effect as the higher energy was found
near steeper topography. Perhaps the entire internal wave spectrum was enhanced by
interaction with topography--the tidal band and continuum could have no dynamic
link.

Another interesting set of moored observations from the equator (Eriksen, 1985)
suggests that a change in the spectral slope occurs at the semidiurnal frequency
(Figure 3). If the tide did not interact with the background wave field, then there is
no obvious reason for different spectraJ slopes above and below the semidiurnal
frequency. The persuasiveness of this argument may depend somewhat on one's
artistry with pen and ruler.

If energy at the semidiurnal frequency were being nonlinearly transferred, one might
expect spectral pea..z ,t harmonics of the tidal frequency. Indeed, harmonics are
often observed in the open ocean in deep water. High resolution spectra suggest that
the smooth continuum spectrum may actually consist primarily of harmonics of the
tide and near-inertial waves (Pinkel 1981 and 1983).
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Figure 3. Autospectra of current and temperature from mooring near the equator
(0020.7'N,144*32.6'W). There is an apparent change in the spectral slope at the
semidiurnal frequency. (Adapted from Eriksen, 1985.)

Even if the internal tide is not a significant energy source to the continuum, it may be
worthy of study as a test wave; consider the ocean as a wave tank with the tide acting
as a steady wave maker. It might be possible to track the propagation of the internal
tide because of its high amplitude and thereby estimate its interaction with other
waves. Perhaps theoretical ideas of nonlinear interaction could be tested in 'iis way.

NEAR-INERTIAL WAVES

Waves in the near-inertial frequency band have been studied extensively for decades.
Although these waves are included in the universal GM formulation, there is a large
amount of space/time variability in the signal. A substantial fraction of the near-
inertial energy comes from local generation (Fu, 1981) and has been modeled
deterministically by many (e.g., Pollard 1970). Since most of the shear variance
comes from the near-inertial band (Figure lb), it may be risky to use the GM model
to estimate vertical shear for purposes of predicting turbulent mixing. Perhaps a
better way is needed to ,xpress the intermittency of these waves so that a more
accurate parameterization of the wave field could be made. Some ideas of
intermittency will be explored in the next section.
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Can the wind-generated, near-inertial waves be the source of energy for the entire
internal wave continuum? Based on a linear model, the overall near-inertial energy
flux input estimated from real wind fields in the N.E. Pacific gives - 1 mW m2

(D'Asaro, 1985), enough to make a significant contribution to the internal wave
continuum. Note that most of the flux occurs in relatively few storm events--
demonstrating the danger of using average values. To check for correlation, the
temporal variability of the near-inertial band is compared with the higher frequency
continuum in Figure 4. The mean spectrum has been divided out; hence, a contour
value of 2 indicates that the spectral level is twice the average value. These
observations are from 140 m on a mooring deployed in the N.E. Pacific during the
Ocean Storms experiment. It appears that the fluctuations in the continuum are
correlated with the near-inertial band, most of the time. Fluctuations in the high-
frequency band, from 0.1 to 2 cph, seem to occur at all frequencies by about the
same factor. However, the variation of the near-inertial band is usually greater than
the high frequencies. It remains to determine if these observations are consistent with
the notions of nonlinear interaction. Perhaps it is possible that the increased high-
frequency waves are directly forced by the wind by a linear process? Or maybe the
increased high-frequency signal is merely the result of the enhanced Doppler shifting
of existing waves?

THE RANDOM WAVE FIELD HYPOTHESIS

The description of the internal wave field as a superposition of waves with random
phase is a basic tenet of the GM model. The notion of a random wave field is also
used extensively by theoreticians when modeling nonlinear interactions. How
accurate is this assumption? What if there is significant correlation between some of
the waves? What are the ramifications to the description and modeling of the wave
field if the assumption of random phase is violated, even slightly?

Rather than tracking each wave component in a-3-w space perhaps it is more efficient
to follow the modulation or envelope of the wave field. Of course, if the wave field
is modeled as a sum of random waves, then the statistical properties of the envelope
can be inferred. But it still may be more straightforward to coicentrate on modeling
the modulation directly as it is a quantity of real interest--the wave energy. The
relationship between individual waves and their envelope has been studied extensively
for surface waves by Longuet-Higgins (1984) and has recently been applied to internal
waves by Moustafa and Rubenstein (1990). For a random wave field with a given
spectral bandwidth, say in frequency, the statistics of the temporal modulation can be
predicted. Does the observed modulation of the internal wave field follow the
prediction? The analysis by Moustafa and Rubenstein (1990) indicated that the
temporal modulation of the internal wave field seemed consistent with the hypothesis
of random phase between components. Further analysis of this type with more data
and extended to include the spatial dimensions is needed to determine if this behavior
is universal.



Observing Oceanic Internal Waves

> 5 2.0 1.5 1.0 0.75 0.5 0.2 <

STORMS 140m VMCM
Horizontal Kinetic Energy/Average

Near-inertial
10 band 4 2''

C__
87 7 . 6

- ..5*y

divie yteaeag au.Hne leo mle 2 time th-vrgeseta

P.

AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN
87 8

Figure 4. Frequency spectrum of horizontal kinetic energy as a function of time as observed
at 140 m during OCEAN STORMS. Plotted values are the ratio of the spectral density
divided by the average value. Hence, a value of 2 implies 2 times the average spectral
density. The modulation of the high-frequency internal wave field is often correlated with
the near-inertial variations. However, there are times, such as in early May when high-
frequency waves inciease without an associated increase in near-inertial energy.

An interesting extension of this approach might be to consider the consequences when
all the phases between components are not random. Or turning the question around,
what does failure of the random phase test imply about the correlation of the phases.
This is undoubtedly a complicated problem since there are many ways that waves can
be correlated, but only one way they can be uncorrelated.
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The tracking of the modulation of the wave field rather than each wave component
has been applied to observations by many investigators, e.g. Frankignoul and Joyce
(1979), Briscoe (1983), and Brown and Owens (1981). The approach is usually to
estimate the energy or momentum in a frequency band as a slowly varying function of
time. The temporal variability can then perhaps be related to a source or sink of
energy or momentum in a deterministic manner. For example, an observed temporal
correlation between the internal wave energy and the large horizontal shear may
indicate a cause and effect relation and lead to identification of an internal wave
source.

Another approach would be to consider the modulation of energy itself as a random
process and try to describe its variability. The results might not identify specific
sources of wave energy, but might lead to an improved statistical description, For
example, consider a formulation that tracks wave packets or groups. Suppose a wave
packet consists of waves within a small frequency/wavenumber bandwidth (6k,,, bo)
centered around (k., wJ) (Figure 5a). The total energy of the wave group will vary in
space and time because of the finite bandwidth. The statistical properties of the
modulation will depend on the relative magnitudes of the waves included in the band
as well as the degree to which the phases of these waves are correlated. The
conjecture is that it is simpler to ignore the details of the infinite number of waves in
the packet and just describe the time space variation of the packet itself. Let the total
modulation M(x,t) of the wave field be written as

M(x,t) = ,, , B(K,,Q,) exp[i(K.x - Qt)] where (K,, 0.) is the

wavenumber and frequency of the modulation of the wave packet composed of
individual waves with frequency/wavenumber centered at (k,, We,). The quantity
B(K,O) is a spectral distribution function, not of the waves themselves, but of the

modulation of the waves. Note that the wave speed c = tmIK, in this case is

the group velocity, not the phase speed, since it is the speed of the wave packet or
energy. Perhaps a universal, statistical model of the wave energy can be formulated
with this approach in a spirit similar to the GM framework. That is, observed spectra
and coherences of the modulation would be used to define < B(K,(Q) B'(KA) >,
just as observed spectra and coherences were used by GM to establish E(k,o). As an
example, an estimate of the spectra of the modulation of vertical displacement in the 1
to 4 cph frequency band is given in Figure 5b. This spectrum can be characterized
by an (1'-1. dependence with a hint of a few peaks. These observations are from a
month-long time series recorded during AIWEX (Arctic Internal Wave Experiment).
Is this universal, and what does it tell us? The feasibility and usefulness of employing
this approach remains an open question.

Instead of resorting to a Fourier representation for M(x,), it may be useful to try an
entirely different representation. For example, a wavelet transform of the mcdulation
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Figure 5. Schematic diagram in wavenumber space (a) of a group of waves with bandwidth
(6w,6k). Spectrum of the temporal modulation of the vertical displacement variance of waves is
in the 1 to 4 cph band. The spectral density is expressed as the log of the ratio relative to
the average variance. These data were recorded for 1 month during AIWEX (Arctic Internal
Wave Experiment) in the Beaufort Sea at 257 m depth.

field may provide insight. This transform would express the modulation time series
as a sum of localized "packets" of varying length. Of course, any representation of
the wave field must also behave somewhat like the GM model, at least to the extent
that the GM statistics mimic observations. However, a different representation may
lead to significant differences in determining higher-order statistics, estimating the
consistency relationships, and modeling nonlinear interactions.
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CONCLUSIONS

Theoretical studies of the dynamics of oceanic internal waves rely on a description of
the oceanic internal wave field. The more accurate the description, the better the
chance for a realistic theory. The GM model has provided the first order statistical
formulation of the wave field. However, effort is needed to improve the description
of aspects of the wave field that do not follow GM. Features of the non-GM wave
field that need further study include internal tides, near-inertial motion and the
random wave assumption. While these areas of research are not new, they need to be
updated and refined to incorporate new data and theoretical ideas.
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INTRODUCTION

In this paper we would like to consider some aspects of the oceanic background and the results of
some modeling studies that pertain to the generation and propagation of internal waves in the ocean.
We will look at this background state as determined from the various field surveys and will
consider the feasibility of modeling these background conditions and phenomena. One of the
motivations for the current studies is that the propagation of internal waves is strongly affected by
velocity and density gradients and that the ocean exhibits a high spatial and temporal variability of
these gradients. This background description encompasses various elements, of which we consider
the mixed layer region, the mesoscale variability and associated eddies, fronts, fine structure, and
their interaction with internal waves.

EXAMPLES OF INTERNAL WAVE PROPAGATION AND SHEAR

Figure 1 shows the results of the simulation of a collapsing turbulent patch in a large scale oceanic
shear field (Piacsek and Roberts, 1975). Note the generation of internal waves indicated by the
streamfunction patterns in the form of rays. There is a prescribed mean vertically sheared flow
present that moves from left to right. As the collapse progresses, more rays come out and are bent
to the right. In the upper right hand side the presence of a critical layer sets up a region into which
the waves cannot propagate. On the left side the rays are refracted toward the vertical and undergo
reflection at the surface, setting up standing wave-like patterns.

Propagating internal waves have often been observed at the bottom of the mixed layer and in the
seasonal thermocline. The results depicted in Figure 2 were obtained with a 200-meter thermistor
chain during a 1987 Planet cruise in the Norwegian Sea (Sellschopp. 1987). The top portion of the
figure shows the time series of the temperature profile versus depth. The corresponding isotherms
are shown in the bottom pkrtion. Note the presence of internal waves at the base of the mixed layer
and in the thermocline.
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It has been established that shear and internal wave activity depend on certain environmental
parameters. These are the Brunt-Vaisala frequency, atmospheric forcing, geostrophic currents, and
topography. The conclusions were reached on the basis of field surveys and theoretical
considerations (Garrett and Munk, 1979; Ruddick and Joyce, 1979; Brown and Owens, 1981;
Briscoe and Weller, 1984).
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Figure 1. Internal wave generation by a collapsing turbulent patch in a stratified fluid, in the
presence of a mean shear (flow from left to right) (Piacsek and Roberts, 1975).
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Figure 2. Internal wave propagation at the bottom of the mixed layer and in the seasonal
thermocline (Sellschopp, 1987).
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Strong vertical geostrophic shears have been measured near fronts using an ADP (acoustic doppler
profiler), during the previously mentioned cruise in the Norwegian Sea along a different track.
Figure 3 shows the measured shear at the edges and middle of a warm feature. Strong positive
shear occurs when passing from cold to warm water (cut a). There is a lack of shear in the middle
of the eddy (cut b) and the presence of a negative shear when passing from warm to cold water (cut
c). The average vertical shears are about 10-3 sec-1 in the frontal region, which is about five times
smaller than the magnitude found near the base of mixed layers.
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Figure 3. Examples of geostrophic shear, as observed by an acoustic Doppler profiler, in passing
into and out of a warm eddy in the Faroe area (Sellschopp, 1987).

An example of strong horizontal geostrophic shear in the confluence region of the Icelandic current
and the North Atlantic inflow is shown in Figure 4. Horizontal shears are about 10 cm/sec/10 km,
and in some sections can be larger. The results are based on the analysis of the Icelandic Current
and the Atlantic Inflow Experiment surveys, carried out by the SACLANT Research Center in 1987
(Hopkins et al., 1989).

An analysis of the internal wave energy budget has been performed for the JASIN survey data by
Briscoe (1983). The results show that sometimes the ra~e of change of internal wave energy

correlates with the mesoscale horizontal shear, the wind, and inertial wave activity (Figure 5). The
correlation is not present all the time, however. Part (b) of the figure shows the dependence of
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environmental parameters of interest would be provided.

In the upper ocean successful prediction of the mixed layer behavior has been achieved in situations
where the atmospheric forcing activity is dominant vis a vis mesoscale advection. Figure 8 displays
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surface forcing during the JASIN experiment in variation of internal wave energy during the

the Northeast Atlantic (Briscoe, 1983). LOTUS experiment in the Sargasso Sea (Briscoe

and Weller, 1984).

mixed layer simulations with three different models at a former ocean station November (30N,

140W in the Pacific) (Martin, 1985). The Niiler (1975) and Garwood (1977) models are of the

'bulk' type (they assur ie the existence of a mixed layer and work with the vertically integrated or

'bulk' equations), whereas the Mellor-Yamada model is of a differential type (i.e., set up by

differencing on a vertical grid). Initial conditions were set to the temperature profile obtained with

an XBT and the atmospheric forcing was derived from meteorological measurements. All the

simulations show the seasonal trends in sea surface temperature and mixed layer depth that are

observed in the data. However, detailed differences do exist in relation to the data. The models

show a quicker spring transition. The ML2 model mixes down less deep in the winter than the

other two and is more at variance with the data.

Simulations of mixed layer behavior that resolved the diurnal (Price et al., 1986) and synoptic time

scale (Wam-Vamas et al., 1981)]were also performed. Some investigators studied the mixed layer
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Figure. 7. Step structures in temperature and salinity profiles as observed in the C-SALT
experiment off Barbados Boyd and Perkins, 1987).

response to hurricanes (Martin, 1982; Price, 1981). Figure 9 shows one such study for hurricane
Eloise that occurred in the Gulf of Mexico. A comparison is shown between the predicted and
measured u and v velocity components. The measurements were made by the NDBO buoy EB-10.
Both phase and amplitude show agreement with data with some slight differences.

A system to predict regional mesoscale behavior has been developed by the Harvard University
group (Robinson et al., 1986). The dynamical model is initialized from field survey data anc is
forced by observed boundary conditions. Data can be assimilated into the model. The boundary
conditions play a crucial role in the forecast. Figure 10 displays dynamical simulations of the
California Current with such a system. Note that on day 14, the simulation with the boundary
condition obtained by linear interpolation of the measurements gives agreement with the data. The
persistence boundary conditions leads to substantial deviations from the actual observed state.

At present a capability has been developed to predict various environmental parameters in
conjunction with a real-time upper ocean nowcasting system that is operational at FNOC (Fleet
Numerical Oceanographic Center) (Clancy and Pollak, 1983). Other prediction systems and
approaches for describing environmental parameters of interest exist in research environments.
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Figure 9. The mixed layer development under Hurricane Eloise (Martin, 1982).

The one that we are focusing on has the advantageous feature of being run operationally every day
in conjunction with an objective analysis of all available data for the world's oceans. This system,
called TOPS (thermodynamic ocean prediction system) (Clancy and Martin, 1981), encompasses a
mixed layer model (formulated as a three-dimensional boundary layer model for the upper ocean),
prognostic Ekman and inertial velocities (predicted by the mixed layer model), and a geostrophic
velocity (provided by a diagnostic calculation or a prognostic forecast). The equations of this
model (Wam-Vamas et al., 1984) take the form
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where T is the temperature, S the salinity, u and v the x- and y-components of the current velocity
(the x and y horizontal coordinates are defined relative to the grid), w the z-component of the
current velocity, F the downward flux of solar radiation, rw a reference density, c the specific heat
of seawater, D a damping coefficient, v a diffusion coefficient, f the Coriolis parameter, A the
horizontal eddy diffusion coefficient, t the time, and z the vertical coordinate (positive upward from
the level sea surface). Ensemble means are denoted by an overbar and primes indicate departure
from these means. The quantities ua, Va are the x-, y-, and z- components of an advection current,
which will be defined subsequently.

The advective terms are retained in the temperature and salinity equations and neglected in the
momentum equations on the basis of scale analysis (Haney, 1974). Such an analysis shows that
the advective terms in the thermal energy equations are of order unity, while the advective terms in
the momentum equations are of the order of the Rossby number. Since the Rossby number is very
small in most regions of the open ocean, the advective terms are dropped in the mornentm
equations.

Because there are no horizontal pressure gradient terms in Eqs. (3) and (4), u and v represent the
wind-drift components of the current. Neglect of horizontal pressure gradients here is motivated by
the fact that geostrophic currents generally do not play an important role inside the mixed-layer
region which is the issue of most concer in this study.

The terms involving the damping coefficient D in Eqs. (3) and (4) represent the drag force caused

by the radiation stress at the base of the mixed layer associated with the propagation of internal
wave energy downward and away from the wind-forced region (Pollard and Millard, 1970; Niiler
and Kraus, 1977)] The terms involving v in Eqs. (1)-(4) account for very weak "background"
eddy diffusion (due to intermittent breaking of internal waves, for example) that exists below the
mixed layer. We take D = 0.1 day-1 and v = 0.1 cm2 s1 and note that these values are within the

range of tesmas for these quantities.
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Figure 10. Example of a mesoscale ocean prediction experiment in the California Current (Robinson
et al., 1986).

The Level-2 turbulence closure theory of Mellor and Yam ada (1974) is used to parameterize the
vertical eddy fluxes of temperature, salinity, and momentum. This turbulence model has been
described in a number of papers (Mellor and Durbin, 1975; Clancy and Martin, 1981) and will not be
presented here. Its energetics are essentially the same as those of Pollad et al. (1973) and Thompson
(1976), with the increase in potential energy during mixed-layer deepening due to the buoyancy
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flux at the layer base balanced locally by mean flow shear generation minus viscous dissipation of
turbulent kinetic energy.

The horizontal eddy diffusion coefficient A is simply taken to be equal to a constant value of
107 cm2 s-1 , and the divergence of the solar radiation flux is based on the data of Jerlov (1968) for
seawater optical type IA.

A vertically stretched grid of 17 points, extending from the level sea surface to 500 m depth, is used

in the model. The horizontal grid, on which T, S, Ui, V, and wa are defined, is a rectangular subset
of the standard FNOC 63 x 63 Northern Hemisphere Polar Stereographic Grid.

The current used to advect the temperature and salinity is given by

ua = ui + ug*, va = vi + vg*, wa = wi (5)

where ui and vi are the x- and y-components of the instantaneous wind-drift current, wi is the
vertical component of the cu, rent resulting from the divergence of ui and vi, and ug* are vg* are the
components of a divergence-free geostrophic current.

The system TOPS provides information on the following environmental parameters: (a) Ekman and
Inertial shears, (b) temperature and salinity profiles, (c) Brunt-Vaisala frequency, (d) Richardson
number, (e) mixed layer depth, and (f) eddy coefficients

We have analyzed the archived forecasts of the TOPS prediction system for the year 1987. The
analysis for environmental parameters was performed at eight former ocean station locations,
Figure 11, with four locations each in the Pacific and the Atlantic, respectively. Figure 12 shows

the monthly averaged mixed layer depth at the eight stations. Observe the almost simultaneous spring
shallowing around the May-June period, and the more diverse fall deepening. Another
striking feature of these results is the much deeper winter values of the MLD (mixed layer depth) in
the Atlantic than in the Pacific, due to the presence of a halocline in the latter than tends to inhibit
deep mixing in the winter. Figure 13 exhibits the simulated seasonal shear at ocean station Papa in
the Atlantic. Note that the maximum shear occurs in the summer. This happens because during the
summer the mixed layer is shallow and contains the momentum generated by the atmospheric
forcing at the surface (in the winter the momentum is contained in a deeper mixed layer).

CONCLUSION

We advocate the use of upper ocean and mesoscale models to provide the deterministic part of the
forecast of the environmental parameters. There are aspects of internal wave statistics and their
non-stationarity which can be predicted by thermodynamic and hydrodynamic models of ocean
circulation. Figure 14 elucidates the proposed approach. Internal wave activity depends on Brunt-
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Figure 11. Locations of the three weather ships and one TOPS model grid in the North Pacific, and
of the 4 weather ships in the North Atlantic, where XBT observations and routine model
predictions have been carried out with ,.:e TOPS operational 3-D mixed layer model.

Vaisala frequency times a non-dimensional parameter (Briscoe and Weller, 1984; Rubenstein,
1984). Thus the model -forecasted Brunt-Vaisala frequency will enable us to calculate the internal
wave activity.

Furthermore, we propose to: (a) collect statistics on internal wave and fine structure, (b) determine
the critical environmental parameters on which the statistics depend, and (c) use the statistical
empirical relations together with the model forecast to determine the environmental parameters of
interest in terms of the mean and the deviations.
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Figure 12. The average mixed layer depth (MLD) at the 8 locations illustrated in Figure 11 for the
year 1985, as obtained by the operational model TOPS forced by GCM fluxes and updated by
analyzed temperature fields using all available XBTs (Piacsek et al., 1988).
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Figure 13. The maximum vertical shear at the eight locations illustrated in Figure 11 for the year
1985, as obtained by the operational model TOPS forced by GCM fluxes and updated by analyzed
temperature fields using all available XBT's (Piacsek, 1988).
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Oceanic internal gravity waves span a range between mesoscale eddies and small-scale

turbulence, providing an important link in the overall energy cascade from the large
scales of generation to the small scales of dissipation. To discuss progress at

understanding internal-wave dynamics, the sixth 'Aha Huliko'a Hawaiian 'Winter

Workshop brought together oceanographers and meteorologists. Conclusions of the
workshop are

* Considerable progress is being made in predicting the diapycnal mixing rates

associated with the shear instability of small-scale internal waves (Figure 1).

* Large-scale internal waves are forced by the atmosphere and (possibly) other

oceanic flows. These waves are the most energetic and can propagate over

distances of 0(1000 km ).

" Intermediate-scale waves couple the large-scale waves to the scale waves by a

spectral cascade. There exist a good kinematic description of these waves (Garrett-
Munk model) and a reasonable account of their dynamics (nonlinear
interactions).

" It is timely to proceed toward a global model to predict the internal wave field and

diapycnal mixing.

This report discusses these conclusions in more detail.

Parameterization of Dissipation

Gregg (1989) suggested a parameterization of the rate of kinetic energy dissipation in
terms of the internal-wave 10-m vertical shear and the buoyancy frequency, which is
consistent with McComas and Mfiller's (1981) and Henyey et al.'s (1986) theoretical
predictions of the energy cascade rate to high wavenumbers. This parameterization has

considerable skill even in complex environments, as seen in Figure 2, which compares
predicted with observed dissipation rates in the Florida Straits (M. Gregg). Also, the large
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Figure 1. Visualization of an internal wave packet breaking at a critical level. Shown are
four isopycnal surfaces from a numerical simulation in which a wave packet propagates
downward through a horizcr, tal shear flow UWz and encounters a critical level z,. Near z,,
regions of high shear and overturned isopycnals develop. The wave eventually breaks",
owing to a three-dimensional instability. The results of this and other simulations are
being used to investigate diapycnal mixing in the deep ocean. (Figure courtesy of Winters
and D'Asaro, Applied Physics Laboratory, University of Washington.)

diapycnal diffusivity inferred from a tracer experiment in the Santa Monica Basin
implies an elevated level of internal-wave shear that was indeed found c M. Gregg,
E. Kunze). On the other hand, Gregg's scaling law has been questioned by Gargett (1990)
and regions exist where the scaling is not observed, such as the Yermak Plateau in the
Arctic Ocean where dissipation rates much higher than predicted have been found
(L. Padman).

The observed scaling of the dissipation rate in terms of internal-wave parameters provides
a stringent test of nonlinear wave-wave interaction theories.
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Figure 2. Contours of normalized kinetic energy dissipation rate along a section through
the Florida straits (along 280 N from West Palm Beach to Little Bahama Bank). In the
interior, the observed rates <e> are comparable to the rates <e,,>, which are inferred from
internal wave parameters using Gregg's (1989) scaling law. The higher values around the
periphery are likely due to interactions with topography. (Courtesy of M. Gregg, University
of Washington.)

The Saturation Range

Existing parameterizations, such as that of Gregg (1989), bridge the gap from small-scale
internal waves of 0(10 m) wavelengths to the dissipation scales in the centimeter range
(Figure 3). Considerable progress has been made in describing these small-scale internal
waves, which are not represented by the Garrett and Munk spectral model. First, a
universal "saturation" range with a -1 spectral slope in the shear or strain spectra is
observed between the roll-off wavenumber m, and the Ozmidov or buoyancy wavenumber
MB. The spectral level is proportional to the buoyancy frequency N squared. Above and
below this saturation range, the spectrum is much more variable. Second, the low
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Figure 3. Schematized vertical wavenumber spectra of the vertical shear of internal

gravity waves in the ocean, troposphere, stratosphere, and mesosphere, scaled to a common
value of the buoyancy frequency N. The wavenumber power law ranges are indicated. The

transitional wavenumbers for the ocean are the bandwidth m, the cut-off or roll-off

wavenumbers m,, the buoyancy or Ozmidov wavenumber m B = (N31) 2' and the
Kolmogorov dissipation wavenumber mK m(h/1

3)1 4 with e being the kinetic energy

dissipation rate and the molecular viscosity -. The analogous wavenumbers for the tropo-,

strato-, and mesosphere are indicated by superscripts t, s and m, respectively. The oceanic

spectrum consists of a large-scale part (m < m') which is not well established, an
intermediate- scale part (W° < m < m) which is well described by the Garrett and Munk

spectral model, a small-scale or "saturation" range between m" and MB with a -1 slope,

and an inertial and viscous dissipation range for m > nB. The variability of the spectrum

is indicated by the shading. The "saturation" range is much less variable than the other

ranges. The atmospheric spectra also show a saturation range with the same spectral slope

and level as the oceanic spectra. The line N 2/m represents theoretical predictions by

Lumley (1964) and Holloway (1983) for buoyant turbulence or nonlinear wave

interactions.
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wavenumber (m < m,), i.e., Garrett and Munk, spectral level and the roll-off wavenumber
mu vary in such a way as to maintain the universal saturation range (M. Gregg). Third,
the probability distribution function of the observed strain field is well represented by a
gamma distribution. Moments at different scales are thus related to a single
(dimensional) parameter (R. Pinkel).

Atmospheric spectra have also been included in Figure 3 because they share the
"saturation" slope and spectral level. Atmospheric gravity waves are generated at low
altitudes by topography and/or convection. When these waves prcpagate upward their
amplitudes increase due to the decrease in density, and the wave spectrum slides along the
-1 slope and "saturates" at the roll-off wavenumber (D. Fritts). Figure 1 shows that
atmospheric gravity waves are a narrow-band process with a peak at mu, whereas oceanic
internal waves represent a broad-band process with a roll-off at mu. Also, atmospheric
gravity waves have shorter lifetimes than oceanic waves, and dissipation rates are higher
in the atmosphere than in the ocean.

Resonant or eikonal wave-wave interaction calculations predict only the energy transfer
from low wavenumbers to the roll-off wavenumber m, not the energy transfer across the
"saturation" range to the dissipation wavenumbers. The classical "buoyancy subrange"
theory of Lumley (1964) predicts the observed NV"/m spectral form on the premise that the
buoyancy flux term is dominant in the turbulence kinetic energy equation. The same
spectrum is also predicted by Holloway (1983) who assumes that strong wave-wave
nonlinearities transfer kinetic and potential energy nearly independently to high
wavenumbers. For the atmosphere a wave theory has been advanced that ascribes the
"saturation" range to random refractive broadening of an upward propagating band-
limited wave field (C. Hines). This wave theory also reproduces the observed spectral slope
and level. On the other hand, rapid changes of the atmospheric spectrum during vertical
propagation suggest that wave breaking may occur at "saturation" scales (D. Fritts). In the

ocean, structures at "saturation" scales often persist for many buoyancy periods; this is
indicative of wave rather than turbulent dynamics (R. Pinkel). The distinction between
wave and turbulent processes may be one of degree. Numerical simulations show a smooth
transition from wave refraction to vigorous overturning with increasing Froude number
(D. Ramsden).

Diapycnal Mixing

Internal wave theory predicts the energy flux to mixing scales; observations provide the
kinetic energy dissipation rate. Additional assumptions are needed to infer the diapycnal
mixing rate. Traditionally, diapycnal mixing is inferred from the buoyancy flux, which
is assumed to be equal to the dissipation rate multiplied by a mixing efficiency factor.
Therefore, to infer mixing rates from internal wave parameters one needs to quantify the
mixing efficiency. An increasingly useful tool to address this problem is direct numerical
simulation. Both visualization of the flow field (D. Siegel, K. Winters) and diagnosis of
the dynamics are now possible. It appears that spatial separation of sources and sinks,
which clearly occurs in the ocean, affects the dynamical balances and must be taken into
account (D. Ramsden). Multiple scale interactions and separated source and sink regions
require extreme numerical resolution. To infer mixing rates one must also carefully
separate changes in available and base-state potential energy (K Winters).
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Overall, present observations and theory indicate a typical diapycnal diffusivity near
10-5 m2s in the upper ocean and thermocline, with much larger values in some areas due to
local wave generation (L. Padman), storm-induced mixing (C. Eriksen), or double
diffusive processes (M. Gregg). This value is generally consistent with estimates from
inverse models, although in some places these estimates are subject to great uncertainties
due to incorrect formulation and neglect of the nonlinearities in the equation of state
(T. McDougall).

Whereas the internal wave-induced diapycnal diffusivity that describes the fluxes of
buoyancy and tracers across isopycnals is being quantified, there is little information
about the internal wave-induced diapycnal viscosity that describes the momentum flux
across isopycnals. Indeed, even the sign of the internal wave or "eddy" Prandtl number is
subject to dispute. There is also little information about isopycnal transports induced by
internal waves.

Boundary and Abyssal Mixing

Several distinct regions of mixing can be identified in the ocean (C. Garrett). In the
ventilated part of the thermocline, vertical transport is primarily caused by advection
along isopycnals, and diapycnal mixing of 0(10- m2s1 ) might perhaps be secondary. Most
of our measurements are from this region or from the even more variable upper ocean. In
contrast, in the unventilated abyssal ocean mixing processes are likely to be more
important. There are few internal-wave measurements in the deep ocean. The few that
have been made indicate that the spectral distribution of internal-wave energy might be
different there (T. Sanford). Characteristics of the internal-wave field in shallow seas
have also not been established yet.

A special mixing regime may occur in the vicinity of benthic boundaries. Understanding
such boundary mixing is important for the parameterization of mixing and the
formulation of boundary conditions in large-scale numerical models. Internal waves
might play a very important role in boundary mixing because both the reflection at critical
angle slopes (Eriksen, 1985) and the scattering at rough bottom topography (N. Xu) result in
a transfer of energy to high wavenumber waves that are more likely to break and mix. A
careful search for signatures of critical angle reflection at two locations has yielded
frustratingly ambiguous results (D. Gilbert).

The stratification of water mixed at the boundary is a key factor in determining how
efficiently the surrounding ocean is mixed. Simple models have been developed for the
restoration of stratification by buoyancy-driven secondary flows and for the net buoyancy
flux (C. Garrett).

Potential Vorticity

Potential vorticity is a conserved quantity that is not carried by internal gravity waves.
Theoretically we expect non-wave motions, often called "vortical" motions, to carry
potential vorticity at internal-wave scales. Vortical motions can interact with internal
waves (J. Riley) and may thus affect the internal-wave field. Potential vorticity
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conservation expresses the invariance of fluid motion under fluid particle relabeling. A
formulation of the equations of motion in terms of truncated Hamiltonian equations that
exhibit this invariance has been achieved (H. Abarbanel).

Attempts to observe small-scale potential vorticity carrying motions have yielded
ambiguous results. Analysis of IWEX data shows an excess of vertical relative vorticity at
25 m horizontal separation above that expected for internal waves but no such excess at 250
m (R. C. Lien). Analysis of data taken downstream of Ampere Seamount shows no
contribution to potential vorticity fluctuations from relative vorticity but only from vortex
stretching (E. Kunze).

Much of the velocity and density finestructure often attributed to vortical motion can be
explained equally well as distortions of an internal-wave field that is vertically advected
and strained. The use of vertically Lagrangian (isopycnal following) coordinates that
eliminate the effects of vertical advection might simplify the kinematical description and
dynamical evolution of internal waves (F. Henyey).

Forcing

Various sources have been suggested for the oceanic internal-wave field. Fluctuations in
the windstress excite mixed-layer inertial oscillations and a large fraction of energy from
these oscillations penet.ates the ocean as near inertial, low-modenumber internal waves.
Although the details of this process can be complicated by mesoscale eddies and storm-
induced mixing (C. Eriksen) there is little reason to doubt that windstress fluctuations are
a major source of large-scale internal waves (E. D'Asaro).

Internal waves of tidal frequency are commonly observed in the ocean and may also be a
major energy source. Several clear examples of generation by the barotropic tide have been
found. However, the amplitude and propagation direction of the internal tide are highly
variable and this variability is not well understood (M. Levine).

Surface waves have also been suspected as being a source for internal waves. Recent
calculations (K. Watson) show, however, that surface waves draw energy from the high-
frequency, low-modenumber internal-wave field, except during periods of very strong
surface waves. These energy transfers indicate that imbalances between the internal and
surface wave fields may relax rapidly.

Despite the large energy contained in mesoscale low frequency motions there is little
evidence that these motions are a major source of energy for the internal-wave field.
Refraction and the resulting trapping of waves in frontal or eddy features can lead to
strong localized wave dissipation and mixing (Kunze, 1985). Similar interactions in a
weaker eddy field have been predicted to result in a net energy flux from the eddy field to
the internal-wave field (Watson, 1985). Recently, radiation of internal waves from newly
formed small coherent eddies has been observed (T. Sanford, R. Pinkel).
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A Global Internal Wave Model

Sufficient progress in theory and observations has been made to outline the structure of a
global model to predict the internal-wa\'e field and diapycnal mixing. Such a model would
follow the propagation of large-scale internal waves from their sources, with transfer of
energy across the time-variable Garrett and Munk spectrum to its local dissipation. To
achieve the understanding of the physics necessary for the construction of such a model the
following issues need to be addressed:

Generation: Wind and tdes may be sufficient to drive the global internal-
wave field. The wind so Arce function is limited by the resolution of wind data
and the accuracy of thL drag coefficient. Nevertheless, the general spatial
distribution and seasonal cycle can perhaps be estimated from current
operational weather products. Presently, we have less confidence in the
construction of the source function for internal tides.

* Propagation: Estimates of the mean free path from group velocity and
nonlinear interaction rates indicate that wind-generated, large-scale waves
propagate significant distances, 0(1000 kin), from their sources (E. D'Asaro,
E. Hirst). The generation and propagation of large-scale waves might thus be a
basically linear problem (D. Rubenstein) and can perhaps be modeled by ray
tracing. The interaction of these large-scale waves with topography and the
mesoscale eddy field remain challenging research areas.

0 Spectral Transfer: We anticipate that resonant interaction theory will predict
the transfer of energy from the propagating large-scale waves to the Garrett and
Munk spectrum with sufficient accuracy (E. Hirst). The necessary
calculations have not yet been done for a highly directional wave field. Energy
transfer by scattering at topography is probably important as well, but has also
not been investigated yet. The subsequent energy transfer across the Garrett
and Munk spectrum, its spectral shape, and the final dissipation and diapycnal
mixing rate will be controlled by more highly nonlinear interactions. To test
the accuracy of nonlinear intereaction theory, comparisons with direct
numerical simulations need to be carried out.

Dissipation: We also anticipate that present research linking dissipation and
its associated mixing to internal-wave parameters at the roll-off wavenumber
mu will converge on a parameterization with significant skill. This area
remains a high priority for research since it will likely result in the ability to
estimate diapycnal mixing from routine internal wave measurements.
However, such measurements alone will be insufficient to prescribe mixing
rates in large-scale models. A global internal wave model is needed.

To make progress on these issues requires coordinated theoretical and observational
studies of specific processes. We suggest as priority issues the quantification of internal-
wave sources, of the propagation of large-scale waves from their sources, and of the
transfer of energy from these waves to the rest of the spectrum.
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Direct numerical simulation will be a powerful tool in this effort. Although the dynamics
are clearly three-dimensional (3D), some processes might be modeled in two dimensions
(2D, vertical plane) affording higher resolution. By careful intercomparison of 2D and 3D
models, the range of applicability of 2D can be addressed (D. Ramsden).

Observationally, the measurement of the directional spectrum of large-scale waves
requires techniques that integrate vertically (o, horizontally). Acoustics is a natural
candidate for this (T. Ewart). Measuring the directionality of large-scale waves away
from obvious sources may yield clues about the location of sources.

Finally, comparison of data and model prediction might require multivariate analysis to
arrive at definite conclusions (C. Frankignoul). Actual predictive models will
undoubtedly also need to be integrated with models of other oceanic processes that affect the
internal-wave field (A. Warn-Varnas).

Conclusions

Internal waves and their effect on larger scales remain a basic and important issue.
Recent progress suggests that we have the tools and conceptual framework to predict
diapycnal diffusivities globally in the not too distant future. Such optimism is not
warranted for the prediction of internal-wave induced momentum fluxes and isopycnal
dispersion. In these problems the vortical mode may turn out to be important. Present
understanding is focused on the upper ocean and thermocline. We are less clear about
internal-wave behavior in shallow seas, the abyss and near boundaries.
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